Fast and Memory-Efficient Network Towards Efficient Image Super-Resolution

被引:66
作者
Du, Zongcai [1 ]
Liu, Ding [2 ]
Liu, Jie [1 ]
Tang, Jie [1 ]
Wu, Gangshan [1 ]
Fu, Lean [2 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] ByteDance Inc, Beijing, Peoples R China
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022 | 2022年
关键词
D O I
10.1109/CVPRW56347.2022.00101
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Runtime and memory consumption are two important aspects for efficient image super-resolution (EISR) models to be deployed on resource-constrained devices. Recent advances in EISR [16, 32] exploit distillation and aggregation strategies with plenty of channel split and concatenation operations to fully use limited hierarchical features. In contrast, sequential network operations avoid frequently accessing preceding states and extra nodes, and thus are beneficial to reducing the memory consumption and runtime overhead. Following this idea, we design our lightweight network backbone by mainly stacking multiple highly optimized convolution and activation layers and decreasing the usage of feature fusion. We propose a novel sequential attention branch, where every pixel is assigned an important factor according to local and global contexts, to enhance high-frequency details. In addition, we tailor the residual block for EISR and propose an enhanced residual block (ERB) to further accelerate the network inference. Finally, combining all the above techniques, we construct a fast and memory-efficient network (FMEN) and its small version FMEN-S, which runs 33% faster and reduces 74% memory consumption compared with the state-of-the-art EISR model: E-RFDN, the champion in [49]. Besides, FMEN-S achieves the lowest memory consumption and the second shortest runtime in NTIRE 2022 challenge on efficient super-resolution [28]. Code is available at https://github.com/NJU-Jet/FMEN.
引用
收藏
页码:852 / 861
页数:10
相关论文
共 52 条
[11]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[12]   Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks [J].
He, Yang ;
Dong, Xuanyi ;
Kang, Guoliang ;
Fu, Yanwei ;
Yan, Chenggang ;
Yang, Yi .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) :3594-3604
[13]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[14]  
Huang Han, 2021, LIGHTWEIGHT IMAGE SU
[15]  
Huang JB, 2015, PROC CVPR IEEE, P5197, DOI 10.1109/CVPR.2015.7299156
[16]   Lightweight Image Super-Resolution with Information Multi-distillation Network [J].
Hui, Zheng ;
Gao, Xinbo ;
Yang, Yunchu ;
Wang, Xiumei .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :2024-2032
[17]   Fast and Accurate Single Image Super-Resolution via Information Distillation Network [J].
Hui, Zheng ;
Wang, Xiumei ;
Gao, Xinbo .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :723-731
[18]   AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results [J].
Zhang, Kai ;
Danelljan, Martin ;
Li, Yawei ;
Timofte, Radu ;
Liu, Jie ;
Tang, Jie ;
Wu, Gangshan ;
Zhu, Yu ;
He, Xiangyu ;
Xu, Wenjie ;
Li, Chenghua ;
Leng, Cong ;
Cheng, Jian ;
Wu, Guangyang ;
Wang, Wenyi ;
Liu, Xiaohong ;
Zhao, Hengyuan ;
Kong, Xiangtao ;
He, Jingwen ;
Qiao, Yu ;
Dong, Chao ;
Luo, Xiaotong ;
Chen, Liang ;
Zhang, Jiangtao ;
Suin, Maitreya ;
Purohit, Kuldeep ;
Rajagopalan, A. N. ;
Li, Xiaochuan ;
Lang, Zhiqiang ;
Nie, Jiangtao ;
Wei, Wei ;
Zhang, Lei ;
Muqeet, Abdul ;
Hwang, Jiwon ;
Yang, Subin ;
Kang, JungHeum ;
Bae, Sung-Ho ;
Kim, Yongwoo ;
Qu, Yanyun ;
Jeon, Geun-Woo ;
Choi, Jun-Ho ;
Kim, Jun-Hyuk ;
Lee, Jong-Seok ;
Marty, Steven ;
Marty, Eric ;
Xiong, Dongliang ;
Chen, Siang ;
Zha, Lin ;
Jiang, Jiande ;
Gao, Xinbo .
COMPUTER VISION - ECCV 2020 WORKSHOPS, PT III, 2020, 12537 :5-40
[19]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[20]  
Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.182, 10.1109/CVPR.2016.181]