Modified Combined-Step-Size Affine Projection Sign Algorithms for Robust Adaptive Filtering in Impulsive Interference Environments

被引:13
作者
Li, Guoliang [1 ]
Zhang, Hongbin [1 ]
Zhao, Ji [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 03期
基金
中国国家自然科学基金;
关键词
affine projection sign algorithm (APSA); sigmoidal active function; combined step-size; system identification; non-Gaussian noise; CONVEX COMBINATION;
D O I
10.3390/sym12030385
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, to further improve the filtering performance and enhance the poor tracking capability of the conventional combined step-size affine projection sign algorithm (CSS-APSA) in system identification, we propose a simplified CSS-APSA (SCSS-APSA) by applying the first-order Taylor series expansion to the sigmoidal active function (of which the independent variable is symmetric) of CSS-APSA. SCSS-APSA has lower computational complexity, and can achieve comparable, or even better filtering performance than that of CSS-APSA. In addition, we propose a modification of the sigmoidal active function. The modified sigmoidal active function is a form of scaling transformation based on the conventional one. Applying the modified function to the CSS-APSA, we can obtain the modified CSS-APSA (MCSS-APSA). Moreover, the extra parameter of MCSS-APSA provides the power to accelerate the convergence rate of CSS-APSA. Following the simplification operations of SCSS-APSA, the computational complexity of MCSS-APSA can also be reduced. Therefore, we get the simplified MCSS-APSA (SMCSS-APSA). Simulation results demonstrate that our proposed algorithms are able to achieve a faster convergence speed in system identification.
引用
收藏
页数:14
相关论文
共 29 条
[1]   New algorithms for improved adaptive convex combination of LMS transversal filters [J].
Arenas-García, J ;
Gómez-Verdejo, V ;
Figueiras-Vidal, AR .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005, 54 (06) :2239-2249
[2]   Adaptive Filtering for Non-Gaussian Stable Processes [J].
Arikan, Orhan ;
Cetin, A. Enis ;
Erzin, Engin .
IEEE SIGNAL PROCESSING LETTERS, 1994, 1 (11) :163-165
[3]   Proportionate normalized least-mean-squares adaptation in echo cancelers [J].
Duttweiler, DL .
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2000, 8 (05) :508-518
[4]   Convex Combination Filtered-X Algorithms for Active Noise Control Systems [J].
Ferrer, Miguel ;
Gonzalez, Alberto ;
de Diego, Maria ;
Pinero, Gema .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2013, 21 (01) :154-165
[5]  
GUO Y, 2019, SYMMETRY-BASEL, V11, DOI DOI 10.3390/SYM11111335
[6]   A family of robust adaptive filtering algorithms based on sigmoid cost [J].
Huang, Fuyi ;
Zhang, Jiashu ;
Zhang, Sheng .
SIGNAL PROCESSING, 2018, 149 :179-192
[7]   Combined-Step-Size Affine Projection Sign Algorithm for Robust Adaptive Filtering in Impulsive Interference Environments [J].
Huang, Fuyi ;
Zhang, Jiashu ;
Zhang, Sheng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2016, 63 (05) :493-497
[8]   Robust convex combination of affine projection-type algorithms using an impulsive noise indicator [J].
Kim, Seung Hun ;
Jeong, Jae Jin ;
Koo, Gyogwon ;
Kim, Sang Woo .
SIGNAL PROCESSING, 2016, 129 :33-37
[9]   Steady-State MSE Performance Analysis of Mixture Approaches to Adaptive Filtering [J].
Kozat, Suleyman Serdar ;
Erdogan, Alper Tunga ;
Singer, Andrew C. ;
Sayed, Ali H. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (08) :4050-4063
[10]   DUAL SIGN ALGORITHM FOR ADAPTIVE FILTERING [J].
KWONG, CP .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1986, 34 (12) :1272-1274