Modifications of poled silicate glasses under heat treatment

被引:20
作者
Redkov, A. V. [1 ]
Melehin, V. G. [2 ]
Raskhodchikov, D. V. [3 ]
Reshetov, I. V. [4 ]
Tagantsev, D. K. [4 ]
Zhurikhina, V. V. [3 ,4 ]
Lipovskii, A. A. [3 ,4 ]
机构
[1] RAS, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Ioffe Inst, Polytech Skaya 26, St Petersburg 194021, Russia
[3] St Petersburg Acad Univ, RAS, St Petersburg 194021, Russia
[4] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
基金
俄罗斯科学基金会;
关键词
Thermal poling; Soda-lime glass; Secondary thermal treatment; Relaxation; Crystallization; 2ND-ORDER OPTICAL NONLINEARITY; VIBRATIONAL-SPECTRA; PHASE-SEPARATION; ELECTRIC-FIELD; WAVE-GUIDES;
D O I
10.1016/j.jnoncrysol.2018.10.011
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Compositional and structural modification of the subanodic region of poled soda-lime glass under secondary heat treatment is studied using secondary ion mass spectrometry and micro-Raman techniques. A relaxation of the layered compositional distribution in the poled region of the glass remits to more equilibrium state in 250-780 degrees C temperature range, and the different relaxation mechanisms replace (and supplement) each other as the temperature rises. The main relaxation mechanism below the glass transition temperature, T-G, is alkalis hydrogen ions exchange, while at temperatures up to similar to 100 degrees C above T-G the main mechanism is the drift of alkali ions. At higher temperatures, up to 780 degrees C, the drift of calcium ions dominates. Heating the poled glass up to 780 degrees C results in partial crystallization of the subsurface layer of the poled glass with the formation of micron size grains, supposedly monoclinic dicalcium silicate, beta-Ca2SiO4.
引用
收藏
页码:279 / 283
页数:5
相关论文
共 31 条
  • [11] Effective diffraction gratings via acidic etching of thermally poled glass
    Kamenskii, A. N.
    Reduto, I. V.
    Petrikov, V. D.
    Lipovskii, A. A.
    [J]. OPTICAL MATERIALS, 2016, 62 : 250 - 254
  • [12] Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling
    Lepicard, A.
    Cardinal, T.
    Fargin, E.
    Adamietz, F.
    Rodriguez, V.
    Richardson, K.
    Dussauze, M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (40) : 22999 - 23007
  • [13] ELECTRIC-FIELD DISTRIBUTION AND NEAR-SURFACE MODIFICATIONS IN SODA LIME GLASS SUBMITTED TO A DC POTENTIAL
    LEPIENSKI, CM
    GIACOMETTI, JA
    FERREIRA, GFL
    FREIRE, FL
    ACHETE, CA
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 159 (03) : 204 - 212
  • [14] Giant Discharge Current in Thermally Poled Silicate Glasses
    Lipovskii, A. A.
    Morozova, A. I.
    Tagantsev, D. K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (40) : 23129 - 23135
  • [15] Electric field imprinting of sub-micron patterns in glass-metal nanocomposites
    Lipovskii, A. A.
    Kuittinen, M.
    Karvinen, P.
    Leinonen, K.
    Melehin, V. G.
    Zhurikhina, V. V.
    Svirko, Yu P.
    [J]. NANOTECHNOLOGY, 2008, 19 (41)
  • [16] MEASUREMENT OF THE LINEAR ELECTROOPTIC COEFFICIENT IN POLED AMORPHOUS SILICA
    LONG, XC
    MYERS, RA
    BRUECK, SRJ
    [J]. OPTICS LETTERS, 1994, 19 (22) : 1819 - 1821
  • [17] Interferometric study of poled glass under etching
    Margulis, W
    Laurell, F
    [J]. OPTICS LETTERS, 1996, 21 (21) : 1786 - 1788
  • [18] Fabrication of waveguides in glasses by a poling procedure
    Margulis, W
    Laurell, F
    [J]. APPLIED PHYSICS LETTERS, 1997, 71 (17) : 2418 - 2420
  • [19] MCMILLAN P, 1984, AM MINERAL, V69, P645
  • [20] MCMILLAN P, 1984, AM MINERAL, V69, P622