Supervised Contrastive Embedding for Medical Image Segmentation

被引:8
作者
Lee, Sangwoo [1 ]
Lee, Yejin [1 ]
Lee, Geongyu [1 ]
Hwang, Sangheum [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Data Sci, Seoul 01811, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Ind & Informat Syst Engn, Seoul 01811, South Korea
[3] Seoul Natl Univ Sci & Technol, Res Ctr Elect & Informat Technol, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Image segmentation; Semantics; Feature extraction; Robustness; Decoding; Task analysis; Training; Medical image segmentation; contrastive learning; boundary-aware sampling; domain robustness;
D O I
10.1109/ACCESS.2021.3118694
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep segmentation networks generally consist of an encoder to extract features from an input image and a decoder to restore them to the original input size to produce segmentation results. In an ideal setting, the trained encoder should possess the semantic embedding capability, which maps a pair of features close to each other when they belong to the same class, and maps them distantly if they correspond to different classes. Recent deep segmentation networks do not directly deal with the embedding behavior of the encoder. Accordingly, we cannot expect that the features embedded by the encoder will have the semantic embedding property. If the model can be trained to have the embedding ability, it will further enhance the performance as restoring from those features is much easier for the decoder. To this end, we propose supervised contrastive embedding, which employs feature-wise contrastive loss for the feature map to enhance the segmentation performance on medical images. We also introduce a boundary-aware sampling strategy, which focuses on the features corresponding to image patches located at the boundary area of the ground-truth annotations. Through extensive experiments on lung segmentation in chest radiographs, liver segmentation in computed tomography, and brain tumor and spinal cord gray matter segmentation in magnetic resonance images, it is demonstrated that the proposed method helps to improve the segmentation performance of popular U-Net, U-Net++, and DeepLabV3+ architectures. Furthermore, it is confirmed that the robustness on domain shifts can be enhanced for segmentation models by the proposed contrastive embedding.
引用
收藏
页码:138403 / 138414
页数:12
相关论文
共 46 条
[1]  
Abraham N, 2019, I S BIOMED IMAGING, P683, DOI 10.1109/ISBI.2019.8759329
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]  
Bakas S., 2018, arXiv
[4]  
Bilic P., ARXIV190104056
[5]  
Chaitanya K., 2020, ARXIV200610511
[6]  
Chen J., ARXIV210204306
[7]  
Chen L.-C., 2014, ICLR
[8]   CaMap: Camera-based Map Manipulation on Mobile Devices [J].
Chen, Liang ;
Chen, Dongyi .
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709