Estimation of different entropies via Hermite interpolating polynomial using Jensen type functionals

被引:1
|
作者
Khan, Khuram Ali [1 ]
Niaz, Tasadduq [1 ,2 ]
Pecaric, Dilda [3 ]
Pecaric, Josip [4 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[2] Univ Cent Punjab, Dept Math, Lahore, Pakistan
[3] Catholic Univ Croatia, Ilica 242, Zagreb, Croatia
[4] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
来源
JOURNAL OF ANALYSIS | 2021年 / 29卷 / 01期
关键词
m-Convex function; Jensen's inequality; Shannon entropy; f- and Renyi divergence; Hermite polynomial; Entropy; 05A19; 39B62; 94A15; 41A05; POPOVICIU TYPE INEQUALITIES; SIZE DISTRIBUTION; CONVEX-FUNCTIONS; ZIPFS LAW; CITIES; EVOLUTION;
D O I
10.1007/s41478-020-00245-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We estimated the different entropies like Shannon entropy, Renyi divergences, Csiszar divergence by using the Jensen's type functionals. The Zipf's mandelbrot law and hybrid Zipf's mandelbrot law are used to estimate the Shannon entropy. Further the Hermite interpolating polynomial is used to generalize the new inequalities for m-convex function.
引用
收藏
页码:15 / 46
页数:32
相关论文
empty
未找到相关数据