Global Weak Solutions to Magnetic Fluid Flows with Nonlinear Maxwell-Cattaneo Heat Transfer Law

被引:4
作者
Aggoune, F. [1 ]
Hamdache, K. [2 ]
Hamroun, D. [1 ]
机构
[1] Univ USTHB, Lab AMNEDP, Fac Math, Algiers 16111, Algeria
[2] ECE Paris, Ecole Ingn, Ctr Rech Immeuble Pollux, F-75725 Paris 15, France
关键词
Navier-Stokes equations; Bloch-Torrey equation; magnetostatic equation; Maxwell-Cattaneo law; heat transfer; magnetic field; magnetization; BOUNDS;
D O I
10.1007/s00021-014-0193-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the equations describing the dynamic of the heat transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat transfer equation we use a generalization given by the Maxwell-Cattaneo law which is a system satisfied by the temperature and the heat flux. We prove a global existence of weak solutions to the system having a finite energy.
引用
收藏
页码:103 / 127
页数:25
相关论文
共 22 条
[1]   Global weak solutions to a ferrofluid flow model [J].
Amirat, Youcef ;
Hamdache, Kamel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (02) :123-151
[2]   Heat Transfer in Incompressible Magnetic Fluid [J].
Amirat, Youcef ;
Hamdache, Kamel .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (02) :217-247
[3]  
Bihari I., 1956, Acta Math. Acad. Sci. Hungar, V7, P81, DOI DOI 10.1007/BF02022967
[4]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[5]  
Boyer F., 2005, C GREN 10 FEVR
[6]  
Cattaneo M.C., 1958, NOTE CRAS I, V247, P431
[7]  
Dautray R., 1985, ANAL MATH CALCUL NUM, V2
[8]   Lp solvability of divergence type parabolic and elliptic systems with partially BMO coefficients [J].
Dong, Hongjie ;
Kim, Doyoon .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (3-4) :357-389
[9]  
FEIREISL E., 2003, DYNAMICS VISCOUS COM
[10]  
Feireisl E., 2009, ADV MATH FLUIDS MECH