Multi-Class Classification of Lung Diseases Using CNN Models

被引:28
|
作者
Hong, Min [1 ]
Rim, Beanbonyka [2 ]
Lee, Hongchang [3 ]
Jang, Hyeonung [3 ]
Oh, Joonho [4 ]
Choi, Seongjun [5 ]
机构
[1] Soonchunhyang Univ, Dept Comp Software Engn, Asan 31538, South Korea
[2] Soonchunhyang Univ, Dept Software Convergence, Asan 31538, South Korea
[3] Haewootech Co Ltd, Busan 46742, South Korea
[4] HDT Co Ltd, Gwangju 61042, South Korea
[5] Soonchunhyang Univ, Coll Med, Cheonan Hosp, Dept Otolaryngol Head & Neck Surg, Cheonan 31151, South Korea
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 19期
基金
新加坡国家研究基金会;
关键词
deep learning; lung diseases; efficientnet; multi-class classification; DIAGNOSIS;
D O I
10.3390/app11199289
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we propose a multi-class classification method by learning lung disease images with Convolutional Neural Network (CNN). As the image data for learning, the U.S. National Institutes of Health (NIH) dataset divided into Normal, Pneumonia, and Pneumothorax and the Cheonan Soonchunhyang University Hospital dataset including Tuberculosis were used. To improve performance, preprocessing was performed with Center Crop while maintaining the aspect ratio of 1:1. As a Noisy Student of EfficientNet B7, fine-tuning learning was performed using the weights learned from ImageNet, and the features of each layer were maximally utilized using the Multi GAP structure. As a result of the experiment, Benchmarks measured with the NIH dataset showed the highest performance among the tested models with an accuracy of 85.32%, and the four-class predictions measured with data from Soonchunhyang University Hospital in Cheonan had an average accuracy of 96.1%, an average sensitivity of 92.2%, an average specificity of 97.4%, and an average inference time of 0.2 s.</p>
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Deep CNN based Multi-class Classification of Alzheimer's Disease using MRI
    Farooq, Ammarah
    Anwar, Syed Muhammad
    Awais, Muhammad
    Rehman, Saad
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 111 - 116
  • [2] Deep Learning in Multi-Class Lung Diseases' Classification on Chest X-ray Images
    Kim, Sungyeup
    Rim, Beanbonyka
    Choi, Seongjun
    Lee, Ahyoung
    Min, Sedong
    Hong, Min
    DIAGNOSTICS, 2022, 12 (04)
  • [3] CLASSIFICATION OF RARE BUILDING CHANGE USING CNN WITH MULTI-CLASS FOCAL LOSS
    Nemoto, Keisuke
    Hamaguchi, Ryuhei
    Imaizumi, Tomoyuki
    Hikosaka, Shuhei
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4663 - 4666
  • [4] Multi-class Classification Approach for Retinal Diseases
    Gualsaqui, Mario G.
    Cuenca, Stefany M.
    Rosero, Ibeth L.
    Almeida, Diego A.
    Cadena, Carolina
    Villalba, Fernando
    Cruz, Jonathan D.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (03) : 392 - 398
  • [5] Multi-Class Retinal Diseases Detection Using Deep CNN With Minimal Memory Consumption
    Nawaz, Asif
    Ali, Tariq
    Mustafa, Ghulam
    Babar, Muhammad
    Qureshi, Basit
    IEEE ACCESS, 2023, 11 : 56170 - 56180
  • [6] Unlocking Diagnosis Potential: CNN in Multi-Class Classification of Corneal Ulcer
    Barua, Sumit
    Saha, Samit
    Bulbuli, Jannatul
    Rahmar, Akib
    Fuad, Md Ibna Salam
    Dofadar, Dibyo Fabian
    Rahman, Rafeed
    2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS, I2CACIS 2024, 2024, : 385 - 390
  • [7] Pathway activity transformation for multi-class classification of lung cancer datasets
    Engchuan, Worrawat
    Chan, Jonathan H.
    NEUROCOMPUTING, 2015, 165 : 81 - 89
  • [8] Effective Feature Selection for Multi-class Classification Models
    Lin, Hung-Yi
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL III, 2013, : 1474 - 1479
  • [9] Multi-Class Object Classification using Deep Learning Models in Automotive Object Detection Scenarios
    Soumya, A.
    Cenkeramaddi, Linga Reddy
    Vishnu, Chalavadi
    Mohan, Krishna C.
    SIXTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2023, 2024, 13072
  • [10] Ensemble Models for Multi-class Classification of Diabetic Retinopathy
    Sahayam, Subin
    Manasa, Tutturu Lakshmi
    Jayaraman, Umarani
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 110 - 117