GEOMETRICALLY CONSISTENT MESH MODIFICATION

被引:16
作者
Bonito, A. [1 ]
Nochetto, R. H. [2 ,3 ]
Pauletti, M. S. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
mesh modification; manifold; parametric finite elements; accuracy preserving; geometric consistency; refinement; coarsening; smoothing; mean curvature; Willmore flow; FINITE-ELEMENT METHODS; WILLMORE FLOW; EQUATIONS; SURFACES; ALGORITHM; BISECTION;
D O I
10.1137/100781833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving.
引用
收藏
页码:1877 / 1899
页数:23
相关论文
共 26 条
[1]  
Bänsch E, 2001, NUMER MATH, V88, P203, DOI 10.1007/s002110000225
[2]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[3]   PARAMETRIC APPROXIMATION OF WILLMORE FLOW AND RELATED GEOMETRIC EVOLUTION EQUATIONS [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :225-253
[4]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[5]   Parametric FEM for geometric biomembranes [J].
Bonito, Andrea ;
Nochetto, Ricardo H. ;
Pauletti, M. Sebastian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) :3171-3188
[6]   A finite element method for surface restoration with smooth boundary conditions [J].
Clarenz, U ;
Diewald, U ;
Dziuk, G ;
Rumpf, M ;
Rusu, R .
COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (05) :427-445
[7]  
Deckelnick K, 2005, ACTA NUMER, V14, P139, DOI 10.1017/S0962492904000224
[8]  
Delfour M.C., 2001, ADV DESIGN CONTROL, V4
[9]   HIGHER-ORDER FINITE ELEMENT METHODS AND POINTWISE ERROR ESTIMATES FOR ELLIPTIC PROBLEMS ON SURFACES [J].
Demlow, Alan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :805-827
[10]  
DZIUK G, 1991, NUMER MATH, V58, P603