MEROMORPHIC LIMITS OF AUTOMORPHISMS

被引:1
作者
Biliotti, L. [1 ]
Ghigi, A. [2 ]
机构
[1] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
[2] Univ Pavia, Dipartimento Matemat Felice Casorati, Via Ferrara 5, I-27100 Pavia, Italy
关键词
COMPLEX; COMPACTIFICATIONS; FLOWS; SPACE;
D O I
10.1007/s00031-020-09551-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact complex manifold in the Fujiki class b. We study the compactification of Aut(0)(X) given by its closure in Barlet cycle space. The boundary points give rise to non-dominant meromorphic self-maps of X. Moreover convergence in cycle space yields convergence of the corresponding meromorphic maps. There are analogous compactifications for reductive subgroups acting trivially on Alb X. If X is Kahler, these compactifications are projective. Finally we give applications to the action of Aut(X) on the set of probability measures on X. In particular we obtain an extension of the Furstenberg lemma to manifolds in the class b.
引用
收藏
页码:1147 / 1168
页数:22
相关论文
共 45 条
[1]  
Akhiezer Dmitri N., 1995, ASPECTS MATH E, VE27
[2]  
Andreotti A., 1967, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V3, P31
[3]  
[Anonymous], 1984, Monographs in Mathematics
[4]  
[Anonymous], 1972, ERGEBNISSE MATH IHRE
[5]   HOLOMORPHIC-FUNCTIONS ON RING SPACES [J].
BARLET, D ;
VAROUCHAS, J .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (03) :327-341
[6]  
BARLET D, 1975, LECT NOTES MATH, V482, P1
[7]  
Barlet D., 2014, CYCLES ANAL COMPLEXE
[8]   Stability of measures on Kahler manifolds [J].
Biliotti, Leonardo ;
Ghigi, Alessandro .
ADVANCES IN MATHEMATICS, 2017, 307 :1108-1150
[9]   Invariant convex sets in polar representations [J].
Biliotti, Leonardo ;
Ghigi, Alessandro ;
Heinzner, Peter .
ISRAEL JOURNAL OF MATHEMATICS, 2016, 213 (01) :423-441
[10]   SATAKE-FURSTENBERG COMPACTIFICATIONS, THE MOMENT MAP AND λ1 [J].
Biliotti, Leonardo ;
Ghigi, Alessandro .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (01) :237-274