Co-clinical FDG-PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer

被引:51
作者
Roy, Sudipta [1 ]
Whitehead, Timothy D. [1 ]
Li, Shunqiang [2 ]
Ademuyiwa, Foluso O. [2 ]
Wahl, Richard L. [1 ,3 ]
Dehdashti, Farrokh [1 ]
Shoghi, Kooresh I. [1 ,4 ]
机构
[1] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Med, Div Oncol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO USA
[4] Washington Univ, Dept Biomed Engn, St Louis, MO 63110 USA
关键词
Triple-negative breast cancer (TNBC); FDG-PET; Radiomics; Co-clinical imaging; Quantitative imaging; Machine learning; HUMAN TUMOR XENOGRAFTS; PRECLINICAL MODELS; DRUG ACTIVITY; RESISTANCE; SUBTYPES;
D O I
10.1007/s00259-021-05489-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose We sought to exploit the heterogeneity afforded by patient-derived tumor xenografts (PDX) to first, optimize and identify robust radiomic features to predict response to therapy in subtype-matched triple negative breast cancer (TNBC) PDX, and second, to implement PDX-optimized image features in a TNBC co-clinical study to predict response to therapy using machine learning (ML) algorithms. Methods TNBC patients and subtype-matched PDX were recruited into a co-clinical FDG-PET imaging trial to predict response to therapy. One hundred thirty-one imaging features were extracted from PDX and human-segmented tumors. Robust image features were identified based on reproducibility, cross-correlation, and volume independence. A rank importance of predictors using ReliefF was used to identify predictive radiomic features in the preclinical PDX trial in conjunction with ML algorithms: classification and regression tree (CART), Naive Bayes (NB), and support vector machines (SVM). The top four PDX-optimized image features, defined as radiomic signatures (RadSig), from each task were then used to predict or assess response to therapy. Performance of RadSig in predicting/assessing response was compared to SUVmean, SUVmax, and lean body mass-normalized SULpeak measures. Results Sixty-four out of 131 preclinical imaging features were identified as robust. NB-RadSig performed highest in predicting and assessing response to therapy in the preclinical PDX trial. In the clinical study, the performance of SVM-RadSig and NB-RadSig to predict and assess response was practically identical and superior to SUVmean, SUVmax, and SULpeak measures. Conclusions We optimized robust FDG-PET radiomic signatures (RadSig) to predict and assess response to therapy in the context of a co-clinical imaging trial.
引用
收藏
页码:550 / 562
页数:13
相关论文
共 46 条
[21]   18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients [J].
Li, Panli ;
Wang, Xiuying ;
Xu, Chongrui ;
Liu, Cheng ;
Zheng, Chaojie ;
Fulham, Michael J. ;
Feng, Dagan ;
Wang, Lisheng ;
Song, Shaoli ;
Huang, Gang .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (05) :1116-1126
[22]   Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts [J].
Li, Shunqiang ;
Shen, Dong ;
Shao, Jieya ;
Crowder, Robert ;
Liu, Wenbin ;
Prat, Aleix ;
He, Xiaping ;
Liu, Shuying ;
Hoog, Jeremy ;
Lu, Charles ;
Ding, Li ;
Griffith, Obi L. ;
Miller, Christopher ;
Larson, Dave ;
Fulton, Robert S. ;
Harrison, Michelle ;
Mooney, Tom ;
McMichael, Joshua F. ;
Luo, Jingqin ;
Tao, Yu ;
Goncalves, Rodrigo ;
Schlosberg, Christopher ;
Hiken, Jeffrey F. ;
Saied, Laila ;
Sanchez, Cesar ;
Giuntoli, Therese ;
Bumb, Caroline ;
Cooper, Crystal ;
Kitchens, Robert T. ;
Lin, Austin ;
Phommaly, Chanpheng ;
Davies, Sherri R. ;
Zhang, Jin ;
Kavuri, Megha Shyam ;
McEachern, Donna ;
Dong, Yi Yu ;
Ma, Cynthia ;
Pluard, Timothy ;
Naughton, Michael ;
Bose, Ron ;
Suresh, Rama ;
McDowell, Reida ;
Michel, Loren ;
Aft, Rebecca ;
Gillanders, William ;
DeSchryver, Katherine ;
Wilson, Richard K. ;
Wang, Shaomeng ;
Mills, Gordon B. ;
Gonzalez-Angulo, Ana .
CELL REPORTS, 2013, 4 (06) :1116-1130
[23]   Molecular Subtypes Recognition of Breast Cancer in Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging Phenotypes from Radiomics Data [J].
Li, Wei ;
Yu, Kun ;
Feng, Chaolu ;
Zhao, Dazhe .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2019, 2019
[24]   A CONCORDANCE CORRELATION-COEFFICIENT TO EVALUATE REPRODUCIBILITY [J].
LIN, LI .
BIOMETRICS, 1989, 45 (01) :255-268
[25]   A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer [J].
Lunardi, Andrea ;
Ala, Ugo ;
Epping, Mirjam T. ;
Salmena, Leonardo ;
Clohessy, John G. ;
Webster, Kaitlyn A. ;
Wang, Guocan ;
Mazzucchelli, Roberta ;
Bianconi, Maristella ;
Stack, Edward C. ;
Lis, Rosina ;
Patnaik, Akash ;
Cantley, Lewis C. ;
Bubley, Glenn ;
Cordon-Cardo, Carlos ;
Gerald, William L. ;
Montironi, Rodolfo ;
Signoretti, Sabina ;
Loda, Massimo ;
Nardella, Caterina ;
Pandolfi, Pier Paolo .
NATURE GENETICS, 2013, 45 (07) :747-+
[26]   Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival [J].
Magbanua, M. J. M. ;
Swigart, L. B. ;
Wu, H-T ;
Hirst, G. L. ;
Yau, C. ;
Wolf, D. M. ;
Tin, A. ;
Salari, R. ;
Shchegrova, S. ;
Pawar, H. ;
Delson, A. L. ;
DeMichele, A. ;
Liu, M. C. ;
Chien, A. J. ;
Tripathy, D. ;
Asare, S. ;
Lin, C-H J. ;
Billings, P. ;
Aleshin, A. ;
Sethi, H. ;
Louie, M. ;
Zimmermann, B. ;
Esserman, L. J. ;
Veer, L. J. van 't .
ANNALS OF ONCOLOGY, 2021, 32 (02) :229-239
[27]   Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance [J].
Marusyk, Andriy ;
Janiszewska, Michalina ;
Polyak, Kornelia .
CANCER CELL, 2020, 37 (04) :471-484
[28]   We need to talk about reliability: making better use of test-retest studies for study design and interpretation [J].
Matheson, Granville J. .
PEERJ, 2019, 7
[29]   Establishment of human tumor xenografts in immunodeficient mice [J].
Morton, Christopher L. ;
Houghton, Peter J. .
NATURE PROTOCOLS, 2007, 2 (02) :247-250
[30]  
Murali Nikitha, 2020, Dig Dis Interv, V4, P73, DOI 10.1055/s-0040-1705097