3D-Printing and Machine Learning Control of Soft Ionic Polymer-Metal Composite Actuators

被引:62
作者
Carrico, James D. [1 ]
Hermans, Tucker [2 ]
Kim, Kwang J. [3 ]
Leang, Kam K. [4 ]
机构
[1] Univ Mary, Sch Engn, Bismarck, ND 58504 USA
[2] Univ Utah, Sch Comp, Utah Learning Lab Manipulat Auton, Robot Ctr, Salt Lake City, UT 84112 USA
[3] Univ Nevada, Dept Mech Engn, Act Mat & Smart Living AMSL Lab, Las Vegas, NV 89154 USA
[4] Univ Utah, Robot Ctr, Dept Mech Engn, Design Automat Robot & Control DARC Lab, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
BAYESIAN OPTIMIZATION; INTEGRATED DESIGN; IPMC ACTUATOR; FABRICATION; MICROPUMP; SENSORS; ROBUST; ROBOT; FLOW;
D O I
10.1038/s41598-019-53570-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a new manufacturing and control paradigm for developing soft ionic polymer-metal composite (IPMC) actuators for soft robotics applications. First, an additive manufacturing method that exploits the fused-filament (3D printing) process is described to overcome challenges with existing methods of creating custom-shaped IPMC actuators. By working with ionomeric precursor material, the 3D-printing process enables the creation of 3D monolithic IPMC devices where ultimately integrated sensors and actuators can be achieved. Second, Bayesian optimization is used as a learning-based control approach to help mitigate complex time-varying dynamic effects in 3D-printed actuators. This approach overcomes the challenges with existing methods where complex models or continuous sensor feedback are needed. The manufacturing and control paradigm is applied to create and control the behavior of example actuators, and subsequently the actuator components are combined to create an example modular reconfigurable IPMC soft crawling robot to demonstrate feasibility. Two hypotheses related to the effectiveness of the machine-learning process are tested. Results show enhancement of actuator performance through machine learning, and the proof-of-concepts can be leveraged for continued advancement of more complex IPMC devices. Emerging challenges are also highlighted.
引用
收藏
页数:17
相关论文
共 84 条
[21]   An IPMC-made deformable-ring-like robot [J].
Firouzeh, A. ;
Ozmaeian, M. ;
Alasty, A. ;
zad, A. Iraji .
SMART MATERIALS AND STRUCTURES, 2012, 21 (06)
[22]   Mitigating IPMC back relaxation through feedforward and feedback control of patterned electrodes [J].
Fleming, Maxwell J. ;
Kim, Kwang J. ;
Leang, Kam K. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (08)
[23]  
Gladman A. S, 2016, NATURE MAT
[24]   Soft Actuators for Small-Scale Robotics [J].
Hines, Lindsey ;
Petersen, Kirstin ;
Lum, Guo Zhan ;
Sitti, Metin .
ADVANCED MATERIALS, 2017, 29 (13)
[25]   Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics [J].
Hubbard, Joel J. ;
Fleming, Maxwell ;
Palmre, Viljar ;
Pugal, David ;
Kim, Kwang J. ;
Leang, Kam K. .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2014, 39 (03) :540-551
[26]   Microfabricating conjugated polymer actuators [J].
Jager, EWH ;
Smela, E ;
Inganäs, O .
SCIENCE, 2000, 290 (5496) :1540-1545
[27]   SCARA based peg-in-hole assembly using compliant IPMC micro gripper [J].
Jain, R. K. ;
Majumder, S. ;
Dutta, A. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (03) :297-311
[28]   Towards the Position Control of Conducting Polymer Trilayer Bending Actuators with Integrated Feedback Sensor [J].
John, Stephen W. ;
Alici, Gursel ;
Cook, Christopher D. .
2009 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2009, :65-+
[29]   Inversion-Based Feedforward Control of Polypyrrole Trilayer Bender Actuators [J].
John, Stephen W. ;
Alici, Gursel ;
Cook, Christopher D. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2010, 15 (01) :149-156
[30]   Robust control of ionic polymer-metal composites [J].
Kang, Sunhyuk ;
Shin, Jongho ;
Kim, Seong Jun ;
Kim, H. Jin ;
Kim, Yong Hyup .
SMART MATERIALS AND STRUCTURES, 2007, 16 (06) :2457-2463