Backscattering Neural Tags for Wireless Brain-Machine Interface Systems

被引:42
作者
Moradi, Elham [1 ]
Amendola, Sara [2 ]
Bjorninen, Toni [1 ]
Sydanheimo, Lauri [1 ]
Carmena, Jose M. [3 ,4 ]
Rabaey, Jan M. [5 ]
Ukkonen, Leena
机构
[1] Tampere Univ Technol, Dept Elect & Commun Engn, FI-33101 Tampere, Finland
[2] Univ Roma Tor Vergata, I-00173 Rome, Italy
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Berkeley Wireless Res Ctr, Berkeley, CA 94704 USA
基金
芬兰科学院;
关键词
Backscattering neural sensor; near-field inductive link; neural prostheses; wireless brain-machine interface;
D O I
10.1109/TAP.2014.2384038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain-machine interface (BMI) technology has tremendous potential to revolutionize healthcare by greatly improving the quality of life of millions of people suffering from a wide variety of neurological conditions. Radio-frequency identification (RFID)-inspired backscattering is a promising approach for wireless powering of miniature neural sensors required in BMI interfaces. We analyze the functionality of millimeter-size loop antennas in the wireless powering of miniature cortical implants through measurements in a human head equivalent liquid phantom and in the head of a postmortem pig. For the first time, we present the design and measurement of a miniature 1 x 1 x 1 mm(3) backscattering device based on a cubic loop connected with an RFID integrated circuit (IC). Our measurement results show that this very small loop receives sufficient electromagnetic power to activate the IC when the device is implanted in a pig's head. This demonstrates the feasibility of extremely small implant antennas in challenging wireless biomedical systems.
引用
收藏
页码:719 / 726
页数:8
相关论文
共 20 条
[1]  
Amendola S., 2014, EUCAP HAG NETH APR 6
[2]  
[Anonymous], 2010, PROC IEEE INT SOLID, DOI [DOI 10.1109/ISSCC.2010.5434025, 10.1109/ISSCC.2010.5434025]
[3]  
Bjorninen T., 2013, IMWS BIO SING DEC 9
[4]   Design of Wireless Links to Implanted Brain-Machine Interface Microelectronic Systems [J].
Bjorninen, Toni ;
Muller, Rikky ;
Ledochowitsch, Peter ;
Sydanheimo, Lauri ;
Ukkonen, Leena ;
Maharbiz, Michel M. ;
Rabaey, Jan M. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2012, 11 :1663-1666
[5]   An implantable wireless neural interface for recording cortical circuit dynamics in moving primates [J].
Borton, David A. ;
Yin, Ming ;
Aceros, Juan ;
Nurmikko, Arto .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (02)
[6]   Advances in Neuroprosthetic Learning and Control [J].
Carmena, Jose M. .
PLOS BIOLOGY, 2013, 11 (05)
[7]  
Cheng K. W., 2012, IEEE ASSCC KOB JAP N
[8]  
Collinger J. L., 2012, LANCET, V381, P564
[9]   SIMULATED BIOLOGICAL-MATERIALS FOR ELECTROMAGNETIC-RADIATION ABSORPTION STUDIES [J].
HARTSGROVE, G ;
KRASZEWSKI, A ;
SUROWIEC, A .
BIOELECTROMAGNETICS, 1987, 8 (01) :29-36
[10]  
Liew WS, 2009, IEEE CUST INTEGR CIR, P507, DOI 10.1109/CICC.2009.5280795