Hydrogen desorption from LiBH4 destabilized by chlorides of transition metal Fe, Co, and Ni

被引:88
作者
Zhang, Bang Jie [1 ]
Liu, Bin Hong [1 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Eng, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Lithium borohydride; Dehydrogenation; Transition metal chlorides; Catalyst; Kinetics; ALUMINUM HYDRIDES; STORAGE; BOROHYDRIDES; RELEASE; BORON; AL; TI;
D O I
10.1016/j.ijhydene.2010.04.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dehydrogenation temperature of LiBH4 was considerably decreased to 230 degrees C-300 degrees C when it was manually mixed with FeCl2, CoCl2 and NiCl2 in a molar ratio of 2:1. Mixing LiBH4 with NiCl2 or FeCl2 led to complete hydrogen desorption from LiBH4, i.e. 18.3 wt% hydrogen was achieved with respect to the weight of LiBH4. However, the CoCl2 addition resulted in less hydrogen release due to the formation of diborane. Ball milling treatment for the mixtures of LiBH4 and these chlorides further decreased hydrogen desorption temperatures. The results indicate that LiBH4 could be effectively destabilized by the chlorides of Fe, Co and Ni. Small doping of these chlorides into LiBH4 was found to be effective in enhancing dehydrogenation kinetics of the remaining LiBH4 due to the formation of metal borides. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7288 / 7294
页数:7
相关论文
共 29 条
[1]   Modified lithium borohydrides for reversible hydrogen storage [J].
An, M ;
Jurgensen, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13) :7062-7067
[2]   Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides [J].
Au, Ming ;
Jurgensen, Arthur R. ;
Spencer, William A. ;
Anton, Donald L. ;
Pinkerton, Frederick E. ;
Hwang, Son-Jong ;
Kim, Chul ;
Bowman, Robert C., Jr. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (47) :18661-18671
[3]   Modified lithium borohydrides for reversible hydrogen storage (2) [J].
Au, Ming ;
Jurgensen, Arthur ;
Zeigler, Kristine .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (51) :26482-26487
[4]   Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J].
Bogdanovic, B ;
Schwickardi, M .
JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 253 (1-2) :1-9
[5]   Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J].
Bogdanovic, B ;
Brand, RA ;
Marjanovic, A ;
Schwickardi, M ;
Tölle, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) :36-58
[6]   Interaction of hydrogen with metal nitrides and imides [J].
Chen, P ;
Xiong, ZT ;
Luo, JZ ;
Lin, JY ;
Tan, KL .
NATURE, 2002, 420 (6913) :302-304
[7]   Nano-Ni doped Li-Mn-B-H system as a new hydrogen storage candidate [J].
Choudhury, Pabitra ;
Srinivasan, Sesha S. ;
Bhethanabotla, Venkat R. ;
Goswami, Yogi ;
McGrath, Kimberly ;
Stefanakos, Elias K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (15) :6325-6334
[8]   A review of hydrogen storage systems based on boron and its compounds [J].
Fakioglu, E ;
Yürüm, Y ;
Veziroglu, TN .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (13) :1371-1376
[9]   Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen [J].
Grochala, W ;
Edwards, PP .
CHEMICAL REVIEWS, 2004, 104 (03) :1283-1315
[10]   Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds [J].
Gross, Adam F. ;
Vajo, John J. ;
Van Atta, Sky L. ;
Olson, Gregory L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14) :5651-5657