Loss of regularity for super critical wave equations

被引:61
作者
Lebeau, G [1 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR 6621, CNRS, F-06108 Nice, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2005年 / 133卷 / 01期
关键词
D O I
10.24033/bsmf.2482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
(Loss of regularity for super critical wave equations). We prove that the local Cauchy problem for the supercritical wave equation in R-d, rectangle u + u(P) = 0, with d >= 3, p > 3 and p > (d + 2)/(d - 2), is ill-posed in H-sigma for every sigma is an element of ]1, sigma(C)[, where sigma(c) = d/2 - 2/(p - 1) is the critical exponent.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 9 条
[1]   GLOBAL CLASSICAL-SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS [J].
BRENNER, P ;
VONWAHL, W .
MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (01) :87-121
[2]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[3]  
Hochstadt H., 1965, Arch. Ration. Mech. Anal, V19, P353, DOI DOI 10.1007/BF00253484
[4]  
Jorgens K., 1961, Math. Z, V77, P295, DOI DOI 10.1007/BF01180181
[5]  
Lebeau G., 2001, B SOC ROY SCI LIEGE, V70, P267
[6]  
Lions J. L., 1969, QUELQUES METHODES RE
[7]  
Segal I. E., 1963, Bull. Soc. Math. France, V91, P129, DOI 10.24033/bsmf.1593
[8]  
Shatah Jalal, 1994, Internat. Math. Res. Notices, V7, p303ff, DOI DOI 10.1155/S1073792894000346
[9]  
STRAUSS WA, 1978, LECTURE NOTES PHYSIC, V73, P197