A projection method for generalized eigenvalue problems using numerical integration

被引:248
作者
Sakurai, T [1 ]
Sugiura, H
机构
[1] Univ Tsukuba, Inst Informat Sci & Elect, Tsukuba, Ibaraki 3058573, Japan
[2] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648603, Japan
关键词
generalized eigenvalue problem; spectral projection; large scale problem; quadrature method;
D O I
10.1016/S0377-0427(03)00565-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a method for finding certain eigenvalues of a generalized eigenvalue problem that lie in a given domain of the complex plane. The proposed method projects the matrix pencil onto a subspace associated with the eigenvalues that are located in the domain via numerical integration. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 23 条
[1]  
Chatelin F., 1993, EIGENVALUES MATRICES
[2]  
CULLUM J, 1989, COMPUT PHYS COMMUN, V59, P19
[3]  
De Samblanx G, 1999, J COMPUT APPL MATH, V107, P195, DOI 10.1016/S0377-0427(99)00089-8
[4]   A NUMERICAL METHOD FOR LOCATING ZEROS OF AN ANALYTIC FUNCTION [J].
DELVES, LM ;
LYNESS, JN .
MATHEMATICS OF COMPUTATION, 1967, 21 (100) :543-&
[5]   ASYMPTOTIC WAVE-FORM EVALUATION VIA A LANCZOS METHOD [J].
GALLIVAN, K ;
GRIMME, E ;
VANDOOREN, P .
APPLIED MATHEMATICS LETTERS, 1994, 7 (05) :75-80
[6]   A rational Lanczos algorithm for model reduction [J].
Gallivan, K ;
Grimme, E ;
VanDooren, P .
NUMERICAL ALGORITHMS, 1996, 12 (1-2) :33-63
[7]  
Gantmacher FR., 1959, The theory of matrices
[8]  
GOHBERG IC, 1982, MATRIX POLYNOMIALS
[9]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[10]   Eigenvalue computation in the 20th century [J].
Golub, GH ;
van der Vorst, HA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 123 (1-2) :35-65