Fabrication of W-1 wt.% TiC composites by spark plasma sintering

被引:26
作者
Ding, Xiao-Yu [1 ]
Luo, Lai-Ma [1 ,3 ]
Chen, Hong-Yu [1 ]
Luo, Guang-Nan [2 ]
Zhu, Xiao-Yong [1 ,3 ]
Zan, Xiang [1 ,3 ]
Cheng, Ji-Gui [1 ,3 ]
Wu, Yu-Cheng [1 ,3 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[3] Labs Nonferrous Met Mat & Proc Engn Anhui Prov, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
W-TiC composites; Chemical reduction; Spark plasma sintering; Thermal conductivity; MECHANICAL-PROPERTIES; TUNGSTEN;
D O I
10.1016/j.fusengdes.2015.01.003
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
TiC/W ultra-fine powders were produced by one-step activation and chemical reduction process. The powders were consolidated by spark plasma sintering (SPS) at 1800 degrees C to suppress grain growth during sintering. The grain size, relative density and the Vicker hardness HV0.2 of the bulk sample fabricated by SPS were 3 pm, 98.6% and 471, respectively. The reduced Young's elastic modulus of the sintered W-1 wt.% TiC composites was 382.7 GPa. As the temperature rises from room temperature (RT) to 1100K, the thermal conductivity of pure W and W-1 wt.% TiC composites decreased with the same trend. However, the thermal conductivity of the samples was both above 120 W/m K at RT. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 1990, ASM HDB, V2, DOI DOI 10.31399/ASM.HB.V02.A0001065
[2]  
Barin I., 1995, THERMOCHEMICAL DATA, V1, DOI [10.1002/9783527619825, DOI 10.1002/9783527619825]
[3]   Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications [J].
Chaudhuri, Rajib Ghosh ;
Paria, Santanu .
CHEMICAL REVIEWS, 2012, 112 (04) :2373-2433
[4]   Microstructural characteristics of commercial purity W and W-1% La2O3 alloy [J].
Cui, Kai ;
Shen, Yinzhong ;
Yu, Jie ;
Ji, Bo .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2013, 41 :143-151
[5]   Study of radioactive inventory generated from W-based components in ITER and PPCS fusion designs [J].
Desecures, Mikael ;
El-Guebaly, Laila ;
Druyts, Frank ;
Van Iseghem, Pierre ;
Massaut, Vincent ;
Van Oost, Guido .
FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) :2674-2678
[6]   Effects of plastic working and MA atmosphere on microstructures of recrystallized W-1.1%TiC [J].
Kajioka, Michio ;
Sakamoto, Tatsuaki ;
Nakai, Kiyomichi ;
Kobayashi, Sengo ;
Kurishita, Hiroaki ;
Matsuo, Satoru ;
Arakawa, Hideo .
JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) :512-515
[7]   Tungsten as first wall material in fusion devices [J].
Kaufmann, M. ;
Neu, R. .
FUSION ENGINEERING AND DESIGN, 2007, 82 (5-14) :521-527
[8]   Deuterium trapping by irradiation damage in tungsten induced by different displacement processes [J].
Kobayashi, Makoto ;
Shimada, Masashi ;
Hatano, Yuji ;
Oda, Takuji ;
Merrill, Brad ;
Oya, Yasuhisa ;
Okuno, Kenji .
FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) :1749-1752
[9]   Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications [J].
Kurishita, H. ;
Amano, Y. ;
Kobayashi, S. ;
Nakai, K. ;
Arakawa, H. ;
Hiraoka, Y. ;
Takida, T. ;
Takebe, K. ;
Matsui, H. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 367 :1453-1457
[10]  
Lassner E., 1999, Tungsten, DOI [10.1007/978-1-4615-4907-9, DOI 10.1007/978-1-4615-4907-9]