Heat transport enhancement in confined Rayleigh-Benard convection feels the shape of the container

被引:23
作者
Hartmann, Robert [1 ,2 ]
Chong, Kai Leong [1 ,2 ]
Stevens, Richard J. A. M. [1 ,2 ]
Verzicco, Roberto [1 ,2 ,3 ,4 ]
Lohse, Detlef [1 ,2 ,5 ]
机构
[1] Univ Twente, Max Planck Ctr Complex Fluid Dynam, Phys Fluids Grp, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Res Inst, Dept Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[4] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[5] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
基金
欧洲研究理事会;
关键词
THERMAL-CONVECTION; TURBULENT CONVECTION; NUMBER; SCHEME;
D O I
10.1209/0295-5075/ac19ed
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Moderate spatial confinement enhances the heat transfer in turbulent Rayleigh-Benard (RB) convection (Chong K. L. et al., Phys. Rev. Lett., 115 (2015) 264503). Here, by performing direct numerical simulations, we answer the question how the shape of the RB cell affects this enhancement. We compare three different geometries: a box with rectangular base (i.e., stronger confined in one horizontal direction), a box with square base (i.e., equally confined in both horizontal directions), and a cylinder (i.e., symmetrically confined in the radial direction). In all cases the confinement can be described by the same confinement parameter Gamma(-1), given as height-over-width aspect ratio. The explored parameter range is 1 <= Gamma(-1) <= 64, 10(7) <= Ra <= 1010 for the Rayleigh number, and a Prandtl number of Pr = 4.38. We find that both the optimal confinement parameter Gamma(-1)(opt) for maximal heat transfer and the actual heat transfer enhancement strongly depend on the cell geometry. The differences can be explained by the formation of different vertically coherent flow structures within the specific geometries. The enhancement is largest in the cylindrical cell, owing to the formation of a domain-spanning flow structure at the optimal confinement parameter Gamma(-1)(opt). Copyright (C) 2021 The author(s)
引用
收藏
页数:7
相关论文
共 33 条
  • [1] Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection
    Ahlers, Guenter
    Grossmann, Siegfried
    Lohse, Detlef
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 503 - 537
  • [2] Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh-Benard convection
    Brown, E.
    Ahlers, G.
    [J]. EPL, 2007, 80 (01)
  • [3] THERMOCONVECTIVE INSTABILITY IN A BOUNDED CYLINDRICAL FLUID LAYER
    CHARLSON, GS
    SANI, RL
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1970, 13 (09) : 1479 - &
  • [4] New perspectives in turbulent Rayleigh-Benard convection
    Chilla, F.
    Schumacher, J.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07)
  • [5] Multiple-resolution scheme in finite-volume code for active or passive scalar turbulence
    Chong, Kai Leong
    Ding, Guangyu
    Xia, Ke-Qing
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 1045 - 1058
  • [6] Effect of Prandtl number on heat transport enhancement in Rayleigh-Benard convection under geometrical confinement
    Chong, Kai Leong
    Wagner, Sebastian
    Kaczorowski, Matthias
    Shishkina, Olga
    Xia, Ke-Qing
    [J]. PHYSICAL REVIEW FLUIDS, 2018, 3 (01):
  • [7] Confined Rayleigh-Benard, Rotating Rayleigh-Benard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation
    Chong, Kai Leong
    Yang, Yantao
    Huang, Shi-Di
    Zhong, Jin-Qiang
    Stevens, Richard J. A. M.
    Verzicco, Roberto
    Lohse, Detlef
    Xia, Ke-Qing
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (06)
  • [8] Exploring the severely con fined regime in Rayleigh-Benard convection
    Chong, Kai Leong
    Xia, Ke-Qing
    [J]. JOURNAL OF FLUID MECHANICS, 2016, 805 : R4
  • [9] Condensation of Coherent Structures in Turbulent Flows
    Chong, Kai Leong
    Huang, Shi-Di
    Kaczorowski, Matthias
    Xia, Ke-Qing
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (26)
  • [10] Does turbulent convection feel the shape of the container?
    Daya, ZA
    Ecke, RE
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (18) : 184501 - 1