A Fourier transform Raman spectrometer with visible laser excitation

被引:20
作者
Dzsaber, S. [1 ,2 ,3 ]
Negyedi, M. [4 ]
Bernath, B. [1 ,2 ]
Gyuere, B. [1 ,2 ]
Feher, T. [1 ,2 ]
Kramberger, C. [3 ]
Pichler, T. [3 ]
Simon, F. [1 ,2 ,3 ]
机构
[1] Budapest Univ Technol & Econ, Dept Phys, H-1111 Budapest, Hungary
[2] MTA BME Condensed Matter Res Grp, H-1111 Budapest, Hungary
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Tubingen, Inst Phys, D-72076 Tubingen, Germany
基金
欧洲研究理事会;
关键词
Fourier transform Raman spectroscopy; multiplex; Fellgett advantage; shot noise; SPECTROSCOPY; NOISE; LIGHT;
D O I
10.1002/jrs.4641
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
We present the development and performance of a Fourier transformation (FT)-based Raman spectrometer working with visible laser (532nm) excitation. It is generally thought that FT-Raman spectrometers are not viable in the visible range where shot noise limits the detector performance and therein they are outperformed by grating based, dispersive ones. We show that contrary to this common belief, the recent advances of high-performance interference filters makes the FT-Raman design a valid alternative to dispersive Raman spectrometers for samples which do not luminesce. We critically compare the performance of our spectrometer to two dispersive ones: a home-built single channel and a state-of-the-art charge coupled device-based instruments. We demonstrate a similar or even better sensitivity than the charge coupled device-based dispersive spectrometer particularly when the laser power density is considered. The instrument possesses all the known advantages of the FT principle of spectral accuracy, high throughput, and economic design. We also discuss the general considerations, which helps the community reassess the utility of the different Raman spectrometer designs. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:327 / 332
页数:6
相关论文
共 21 条
[1]   Interference-filter-stabilized external-cavity diode lasers [J].
Baillard, X. ;
Gauguet, A. ;
Bize, S. ;
Lemonde, P. ;
Laurent, Ph. ;
Clairon, A. ;
Rosenbusch, P. .
OPTICS COMMUNICATIONS, 2006, 266 (02) :609-613
[2]   DESIGN AND CHARACTERIZATION OF A VISIBLE-LIGHT FOURIER-TRANSFORM RAMAN SPECTROMETER [J].
BRENAN, CJH ;
HUNTER, IW .
APPLIED SPECTROSCOPY, 1995, 49 (08) :1086-1093
[3]   FT-Raman spectroscopy: A catalyst for the Raman explosion? [J].
Chase, Bruce .
JOURNAL OF CHEMICAL EDUCATION, 2007, 84 (01) :75-80
[4]   FOURIER-TRANSFORM RAMAN-SPECTROSCOPY [J].
CHASE, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (24) :7485-7488
[5]  
Chases B., 2003, 225 NAT M AM CHEM SO
[6]   SIGNAL-TO-NOISE CONSIDERATIONS IN FT-RAMAN SPECTROSCOPY [J].
EVERALL, NJ ;
HOWARD, J .
APPLIED SPECTROSCOPY, 1989, 43 (05) :778-781
[7]   A broadband and high throughput single-monochromator Raman spectrometer: Application for single-wall carbon nanotubes [J].
Fabian, Gabor ;
Kramberger, Christian ;
Friedrich, Alexander ;
Simon, Ferenc ;
Pichler, Thomas .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (02)
[8]  
Fellgetts P. B., 1949, THESIS U CAMBRIDGE C
[9]  
Ferraros J., 2003, INTRO RAMAN SPECTROS
[10]   Raman Spectroscopy Using a Spatial Heterodyne Spectrometer: Proof of Concept [J].
Gomer, Nathaniel R. ;
Gordon, Christopher M. ;
Lucey, Paul ;
Sharma, Shiv K. ;
Carter, J. Chance ;
Angel, S. Michael .
APPLIED SPECTROSCOPY, 2011, 65 (08) :849-857