Co-evolution based machine-learning for predicting functional interactions between human genes
被引:15
|
作者:
Stupp, Doron
论文数: 0引用数: 0
h-index: 0
机构:
Hebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, IsraelHebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, Israel
Stupp, Doron
[1
]
Sharon, Elad
论文数: 0引用数: 0
h-index: 0
机构:
Hebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, IsraelHebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, Israel
Sharon, Elad
[1
]
Bloch, Idit
论文数: 0引用数: 0
h-index: 0
机构:
Hebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, IsraelHebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, Israel
Bloch, Idit
[1
]
Zitnik, Marinka
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Biomed Informat, Boston, MA 02115 USAHebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, Israel
Zitnik, Marinka
[2
]
Zuk, Or
论文数: 0引用数: 0
h-index: 0
机构:
Hebrew Univ Jerusalem, Dept Stat & Data Sci, IL-9190501 Jerusalem, IsraelHebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, Israel
Zuk, Or
[3
]
Tabach, Yuval
论文数: 0引用数: 0
h-index: 0
机构:
Hebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, IsraelHebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, Israel
Tabach, Yuval
[1
]
机构:
[1] Hebrew Univ Jerusalem, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-9112001 Jerusalem, Israel
[2] Harvard Univ, Dept Biomed Informat, Boston, MA 02115 USA
[3] Hebrew Univ Jerusalem, Dept Stat & Data Sci, IL-9190501 Jerusalem, Israel
Over the next decade, more than a million eukaryotic species are expected to be fully sequenced. This has the potential to improve our understanding of genotype and phenotype crosstalk, gene function and interactions, and answer evolutionary questions. Here, we develop a machine-learning approach for utilizing phylogenetic profiles across 1154 eukaryotic species. This method integrates co-evolution across eukaryotic clades to predict functional interactions between human genes and the context for these interactions. We benchmark our approach showing a 14% performance increase (auROC) compared to previous methods. Using this approach, we predict functional annotations for less studied genes. We focus on DNA repair and verify that 9 of the top 50 predicted genes have been identified elsewhere, with others previously prioritized by high-throughput screens. Overall, our approach enables better annotation of function and functional interactions and facilitates the understanding of evolutionary processes underlying co-evolution. The manuscript is accompanied by a webserver available at: https://mlpp.cs.huji.ac.il.
机构:
Doshisha Univ, Fac Life & Med Sci, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, JapanDoshisha Univ, Fac Life & Med Sci, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, Japan
Hiwa, Satoru
Obuchi, Shogo
论文数: 0引用数: 0
h-index: 0
机构:
Doshisha Univ, Fac Life & Med Sci, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, JapanDoshisha Univ, Fac Life & Med Sci, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, Japan
Obuchi, Shogo
Hiroyasu, Tomoyuki
论文数: 0引用数: 0
h-index: 0
机构:
Doshisha Univ, Fac Life & Med Sci, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, JapanDoshisha Univ, Fac Life & Med Sci, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, Japan