Goodness of fit test for the generalized Rayleigh distribution with unknown parameters

被引:21
|
作者
Abd-Elfattah, A. M. [1 ]
机构
[1] Cairo Univ, Inst Stat Studies & Res, Dept Math Stat, Cairo, Egypt
关键词
Anderson-Darling test; generalized Rayleigh; maximum likelihood; Monte Carlo simulation; power function; KOLMOGOROV-SMIRNOV TEST; EXPONENTIAL-DISTRIBUTION; WEIBULL-DISTRIBUTIONS; LOCATION; STATISTICS; PREDICTION;
D O I
10.1080/00949650903348155
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of goodness-of-fit test based on Anderson-Darling (AD) statistic is discussed, with reference to the composite hypothesis that a sample of observations comes from a generalized Rayleigh distribution whose parameters are unspecified. Monte Carlo simulation studies were performed to calculate the critical values for AD test. These critical values are then used for testing whether a set of observations follows a generalized Rayleigh distribution when the scale and shape parameters are unspecified and are estimated from the sample. Functional relationship between the critical values of AD is also examined for each shape parameter (), sample size (n) and significance level (). The power study is performed with the hypothesized generalized Rayleigh against alternate distributions.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条
  • [1] Goodness of fit test for Rayleigh distribution with censored observations
    K. M. Vaisakh
    Thomas Xavier
    E. P. Sreedevi
    Journal of the Korean Statistical Society, 2023, 52 : 794 - 815
  • [2] Goodness of fit test for Rayleigh distribution with censored observations
    Vaisakh, K. M.
    Xavier, Thomas
    Sreedevi, E. P.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (04) : 794 - 815
  • [3] Goodness of fit test for a skewed generalized normal distribution
    Lian, Chengdi
    Yang, Ke
    Liu, Aidi
    Cheng, Weihu
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (12) : 2646 - 2678
  • [4] A goodness-of-fit test for generalized error distribution
    Coin, Daniele
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (23) : 11485 - 11499
  • [5] A bootstrap goodness of fit test for the generalized Pareto distribution
    Villasenor-Alva, Jose A.
    Gonzalez-Estrada, Elizabeth
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (11) : 3835 - 3841
  • [6] GOODNESS-OF-FIT TEST FOR EXPONENTIAL DISTRIBUTION WITH MEAN UNKNOWN
    SCHAFER, RE
    FINKELST.JM
    COLLINS, J
    BIOMETRIKA, 1972, 59 (01) : 222 - 224
  • [7] A Goodness-of-Fit Test for Uniform Distribution with Unknown Limits
    Rublik, F.
    Witkovsky, V.
    2017 11TH INTERNATIONAL CONFERENCE ON MEASUREMENT, 2017, : 31 - 34
  • [8] GOODNESS of FIT TESTS for RAYLEIGH DISTRIBUTION
    Vaisakh, K.M.
    Xavier, Thomas
    Sreedevi, E.P.
    arXiv, 2022,
  • [9] A Goodness-of-Fit Test for Rayleigh Distribution Based on Hellinger Distance
    Jahanshahi S.M.A.
    Rad A.H.
    Fakoor V.
    Annals of Data Science, 2016, 3 (4) : 401 - 411
  • [10] Chi-squared goodness-of-fit tests for the generalized Rayleigh distribution
    Tilbi D.
    Seddik-Ameur N.
    Journal of Statistical Theory and Practice, 2017, 11 (4) : 594 - 603