Detection and imaging in strongly backscattering randomly layered media

被引:9
作者
Alonso, R. [1 ]
Borcea, L. [1 ]
Papanicolaou, G. [2 ]
Tsogka, C. [3 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Univ Crete, Dept Appl Math, GR-71409 Iraklion, Greece
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
WAVE-PROPAGATION;
D O I
10.1088/0266-5611/27/2/025004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Echoes from small reflectors buried in the heavy clutter are weak and difficult to distinguish from the medium backscatter. Detection and imaging with sensor arrays in such media require filtering out the unwanted backscatter and enhancing the echoes from the reflectors that we wish to locate. We consider a filtering and detection approach based on the singular value decomposition of the local cosine transform of the array responsematrix. The algorithm is general and can be used for detection and imaging in the heavy clutter, but its analysis depends on the model of the cluttered medium. This paper is concerned with the analysis of the algorithm in finely layered random media. We obtain a detailed characterization of the singular values of the transformed array response matrix and justify the systematic approach of the filtering algorithm for detecting and refining the time windows that contain the echoes that are useful in imaging.
引用
收藏
页数:43
相关论文
共 34 条
[1]   FREQUENCY CONTENT OF RANDOMLY SCATTERED SIGNALS [J].
ASCH, M ;
KOHLER, W ;
PAPANICOLAOU, G ;
POSTEL, M ;
WHITE, B .
SIAM REVIEW, 1991, 33 (04) :519-625
[2]   Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration [J].
Aubry, Alexandre ;
Derode, Arnaud .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (04)
[3]   Random Matrix Theory Applied to Acoustic Backscattering and Imaging In Complex Media [J].
Aubry, Alexandre ;
Derode, Arnaud .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[4]   Construction and analysis of a new mixed finite element allowing mass lumping [J].
Becache, E ;
Joly, P ;
Tsogka, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (11) :1281-1286
[5]   An analysis of new mixed finite elements for the approximation of wave propagation problems [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1053-1084
[6]  
Biondi B., 2006, Investigations in Geophysics Society of Exploration Geophysicists, V14
[7]  
Bleistein N., 2001, Mathematics of multidimensional seismic inversion
[8]  
BORCCA L, 2011, SIAM IMAGING S UNPUB
[9]   Interferometric array imaging in clutter [J].
Borcea, L ;
Papanicolaou, G ;
Tsogka, C .
INVERSE PROBLEMS, 2005, 21 (04) :1419-1460
[10]   FILTERING RANDOM LAYERING EFFECTS IN IMAGING [J].
Borcea, L. ;
del Cueto, F. Gonzalez ;
Papanicolaou, G. ;
Tsogka, C. .
MULTISCALE MODELING & SIMULATION, 2010, 8 (03) :751-781