Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core-Shell and Si/Ge/Si Core-Double Shell Nanowires

被引:16
作者
Zhang, Xiaolong [1 ,2 ]
Jevasuwan, Wipakorn [1 ]
Sugimoto, Yoshimasa [1 ]
Fukata, Naoki [1 ,2 ]
机构
[1] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[2] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058573, Japan
关键词
core-shell nanowire; silicon; germanium; hole gas accumulation; nanoimprint; catalyst-free; SILICON NANOWIRES; SOLAR-CELLS; GROWTH; BORON; TRANSISTORS; MODULATION; TRANSPORT; MOBILITY; STRESS; GAAS;
D O I
10.1021/acsnano.9b06821
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The catalyst-free formation of silicon (Si) and germanium (Ge) core-shell and core-double shell nanowires (NWs) was studied for use as building blocks of high electron (hole) mobility transistors (HEMTs). Vertically aligned p-type Si (p-Si)/intrinsic Ge (i-Ge) core-shell NWs and p-Si/i-Ge/p-Si core-double shell NWs with uniform diameters were formed by combining nanoimprint lithography, Bosch etching, and chemical vapor deposition. The boron (B) doping process was used to prepare p-Si NWs. The hole gas accumulation could be reliably detected from the i-Ge shell region in the p-Si/i-Ge core-shell NW and p-Si/i-Ge/p-Si core double shell NW arrays through the Fano resonance effect, showing that core-shell NW heterostructures can suppress impurity scattering and act as high-mobility transistor channels. This provides the possibility for the future creation of vertical high-speed transistors.
引用
收藏
页码:13403 / 13412
页数:10
相关论文
共 69 条
[41]   One-dimensional hole gas in germanium/silicon nanowire heterostructures [J].
Lu, W ;
Xiang, J ;
Timko, BP ;
Wu, Y ;
Lieber, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :10046-10051
[42]   Scanning tunneling microscopic study of boron-doped silicon nanowires [J].
Ma, DDD ;
Lee, CS ;
Lee, ST .
APPLIED PHYSICS LETTERS, 2001, 79 (15) :2468-2470
[43]   Nanowire arrays defined by nanoimprint lithography [J].
Mårtensson, T ;
Carlberg, P ;
Borgstrom, M ;
Montelius, L ;
Seifert, W ;
Samuelson, L .
NANO LETTERS, 2004, 4 (04) :699-702
[44]   Position-Controlled Uniform GaAs Nanowires on Silicon using Nanoimprint Lithography [J].
Munshi, A. M. ;
Dheeraj, D. L. ;
Fauske, V. T. ;
Kim, D. C. ;
Huh, J. ;
Reinertsen, J. F. ;
Ahtapodov, L. ;
Lee, K. D. ;
Heidari, B. ;
van Helvoort, A. T. J. ;
Fimland, B. O. ;
Weman, H. .
NANO LETTERS, 2014, 14 (02) :960-966
[45]   Structural and electronic properties of epitaxial core-shell nanowire heterostructures [J].
Musin, RN ;
Wang, XQ .
PHYSICAL REVIEW B, 2005, 71 (15)
[46]   Vertically Stacked Silicon Nanowire Transistors Fabricated by Inductive Plasma Etching and Stress-Limited Oxidation [J].
Ng, Ricky M. Y. ;
Wang, Tao ;
Liu, Feng ;
Zuo, Xuan ;
He, Jin ;
Chan, Mansun .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (05) :520-522
[47]   Facet-Selective Nucleation and Conformal Epitaxy of Ge Shells on Si Nanowires [J].
Nguyen, Binh-Minh ;
Swartzentruber, Brian ;
Ro, Yun Goo ;
Dayeh, Shadi A. .
NANO LETTERS, 2015, 15 (11) :7258-7264
[48]   SELF-ENERGY EFFECTS OF THE OPTICAL PHONONS OF HEAVILY DOPED P-GAAS AND P-GE [J].
OLEGO, D ;
CARDONA, M .
PHYSICAL REVIEW B, 1981, 23 (12) :6592-6602
[49]   Effect of diborane on the microstructure of boron-doped silicon nanowires [J].
Pan, L ;
Lew, KK ;
Redwing, JM ;
Dickey, EC .
JOURNAL OF CRYSTAL GROWTH, 2005, 277 (1-4) :428-436
[50]   Defects Responsible for the Hole Gas in Ge/Si Core-Shell Nanowires [J].
Park, Ji-Sang ;
Ryu, Byungki ;
Moon, Chang-Youn ;
Chang, K. J. .
NANO LETTERS, 2010, 10 (01) :116-121