Cozero bases of frames

被引:27
作者
Banaschewski, B
Gilmour, C [1 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
D O I
10.1016/S0022-4049(99)00167-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A. frame L which is generated by a regular sigma -frame (= cozero basis of L) is completely regular. Its cozero part CozL is then the largest cozero basis of L, and we characterize here those L for which it is the only such. Further, we give a similar characterization for the finitary analogue of this situation where regular sigma -frames are replaced by Boolean algebras. In addition, we consider the compactifications of a frame L provided by its cozero bases and show that all compactifications are of this kind iff L is pseudocompact. Finally, as an aside, we characterize the completely regular frames with unique compactification and their zero-dimensional counterparts. (C) 2001 Elsevier Science B.V. All rights reserved. MSC: 54D35; 54D20; 54D60; 06E99.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 19 条
[1]   COMPACTIFICATION AND LOCAL CONNECTEDNESS OF FRAMES [J].
BABOOLAL, D ;
BANASCHEWSKI, B .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 70 (1-2) :3-16
[2]   COMPACTIFICATION OF FRAMES [J].
BANASCHEWSKI, B .
MATHEMATISCHE NACHRICHTEN, 1990, 149 :105-116
[3]  
BANASCHEWSKI B, 1984, J PURE APPL ALGEBRA, V33, P107, DOI 10.1016/0022-4049(84)90001-X
[4]  
Banaschewski B., 1980, Houst. J. Math., V6, P301
[5]  
Banaschewski B., 1989, CATEGORICAL TOPOLOGY, P257
[6]  
BANASCHEWSKI B., 1996, Comment. Math. Univ. Carolin., V37, P577
[7]  
Banaschewski B., 1997, TEXTOS MATEMATICA B, V12
[8]  
Banaschewski Bernhard, 1993, Quaestiones Math., V16, P51
[9]  
Gillman L., 1960, RINGS CONTINUOUS FUN
[10]   REALCOMPACT SPACES AND REGULAR SIGMA-FRAMES [J].
GILMOUR, CRA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 96 (JUL) :73-79