Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor

被引:52
作者
Hosseini, Mir Ghasem [1 ]
Shahryari, Elham [1 ]
机构
[1] Univ Tabriz, Dept Phys Chem, Fac Chem, Electrochem Res Lab, Tabriz, Iran
关键词
Supercapacitor; Graphene oxide; In-situ polymerization; Electrochemical Impedance Spectroscopy (EIS); Polyaniline; NANOWIRE ARRAYS; PERFORMANCE; NANOCOMPOSITES; COMPOSITES; SHEETS; FILM;
D O I
10.1016/j.jmst.2016.05.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The synthesis of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline namely (GMMP) nanocomposite for application in supercapacitor devices was investigated. Morphology of the nanocomposites was studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray microanalysis (EDX). The electrochemical properties of nanocomposite based electrodes were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques in 0.5 mol/L Na2SO4. The specific capacitances of 173.00, 127.85, 87.50, 58.65 and 12.00 (mF cm(-2)) were obtained for GMMP, GMP (GO-MWCNT-PANI), GMM (GO-MWCNT-MnO2), GM (GO-MWCNT) and G (GO) at a scan rate of 10 mV s(-1), respectively. Also, GMMP nanocomposite retained 90% initial capacitance after 200 cycle of charge-discharge. The good electrochemical response of this nanocomposite is due to the combination of the electrical double layer capacitance of GO and MWCNT and the gradual introduction of pseudo-capacitance through the redox processes of PANI, -COOH, -OH (in MWCNT-COOH, GO-COOH and GO-OH) and MnO2. This revealed the synergistic effect of PANI, MnO2, -OH -COOH on the carbon based support. Copyright (C) 2016, The editorial office of Journal of Materials Science & Technology. Published by Elsevier Limited.
引用
收藏
页码:763 / 773
页数:11
相关论文
共 41 条
[1]   Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors [J].
Aboutalebi, Seyed Hamed ;
Chidembo, Alfred T. ;
Salari, Maryam ;
Konstantinov, Konstantin ;
Wexler, David ;
Liu, Hua Kun ;
Dou, Shi Xue .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1855-1865
[2]   ZnO/carbon nanotube nanocomposite for high energy density supercapacitors [J].
Aravinda, L. S. ;
Nagaraja, K. K. ;
Nagaraja, H. S. ;
Bhat, K. Udaya ;
Bhat, Badekai Ramachandra .
ELECTROCHIMICA ACTA, 2013, 95 :119-124
[3]   Nanostructured carbon for energy storage and conversion [J].
Candelaria, Stephanie L. ;
Shao, Yuyan ;
Zhou, Wei ;
Li, Xiaolin ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Yong ;
Liu, Jun ;
Li, Jinghong ;
Cao, Guozhong .
NANO ENERGY, 2012, 1 (02) :195-220
[4]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[5]  
Conway B.E., 1999, ELECTROCHEMICAL SUPE, P486
[6]   Porous graphene-carbon nanotube hybrid paper as a flexible nano-scaffold for polyaniline immobilization and application in all-solid-state supercapacitors [J].
Fan, Wei ;
Miao, Yue-E ;
Zhang, Longsheng ;
Huang, Yunpeng ;
Liu, Tianxi .
RSC ADVANCES, 2015, 5 (39) :31064-31073
[7]   Graphene-polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol [J].
Fan, Yang ;
Liu, Jin-Hang ;
Yang, Chun-Peng ;
Yu, Meng ;
Liu, Peng .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 157 (02) :669-674
[8]  
Frackowiak EdE., 2013, Supercapacitors: Materials, Systems and Applications
[9]  
Hosseini M., 2015, Int J Nanosci Nanotechnol, V11, P147
[10]  
Hosseini MG, 2016, IRAN CHEM COMMUN, V4, P67