Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor

被引:50
作者
Hosseini, Mir Ghasem [1 ]
Shahryari, Elham [1 ]
机构
[1] Univ Tabriz, Dept Phys Chem, Fac Chem, Electrochem Res Lab, Tabriz, Iran
关键词
Supercapacitor; Graphene oxide; In-situ polymerization; Electrochemical Impedance Spectroscopy (EIS); Polyaniline; NANOWIRE ARRAYS; PERFORMANCE; NANOCOMPOSITES; COMPOSITES; SHEETS; FILM;
D O I
10.1016/j.jmst.2016.05.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The synthesis of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline namely (GMMP) nanocomposite for application in supercapacitor devices was investigated. Morphology of the nanocomposites was studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray microanalysis (EDX). The electrochemical properties of nanocomposite based electrodes were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques in 0.5 mol/L Na2SO4. The specific capacitances of 173.00, 127.85, 87.50, 58.65 and 12.00 (mF cm(-2)) were obtained for GMMP, GMP (GO-MWCNT-PANI), GMM (GO-MWCNT-MnO2), GM (GO-MWCNT) and G (GO) at a scan rate of 10 mV s(-1), respectively. Also, GMMP nanocomposite retained 90% initial capacitance after 200 cycle of charge-discharge. The good electrochemical response of this nanocomposite is due to the combination of the electrical double layer capacitance of GO and MWCNT and the gradual introduction of pseudo-capacitance through the redox processes of PANI, -COOH, -OH (in MWCNT-COOH, GO-COOH and GO-OH) and MnO2. This revealed the synergistic effect of PANI, MnO2, -OH -COOH on the carbon based support. Copyright (C) 2016, The editorial office of Journal of Materials Science & Technology. Published by Elsevier Limited.
引用
收藏
页码:763 / 773
页数:11
相关论文
共 41 条
  • [1] Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors
    Aboutalebi, Seyed Hamed
    Chidembo, Alfred T.
    Salari, Maryam
    Konstantinov, Konstantin
    Wexler, David
    Liu, Hua Kun
    Dou, Shi Xue
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) : 1855 - 1865
  • [2] ZnO/carbon nanotube nanocomposite for high energy density supercapacitors
    Aravinda, L. S.
    Nagaraja, K. K.
    Nagaraja, H. S.
    Bhat, K. Udaya
    Bhat, Badekai Ramachandra
    [J]. ELECTROCHIMICA ACTA, 2013, 95 : 119 - 124
  • [3] Nanostructured carbon for energy storage and conversion
    Candelaria, Stephanie L.
    Shao, Yuyan
    Zhou, Wei
    Li, Xiaolin
    Xiao, Jie
    Zhang, Ji-Guang
    Wang, Yong
    Liu, Jun
    Li, Jinghong
    Cao, Guozhong
    [J]. NANO ENERGY, 2012, 1 (02) : 195 - 220
  • [4] Graphene Oxide-MnO2 Nanocomposites for Supercapacitors
    Chen, Sheng
    Zhu, Junwu
    Wu, Xiaodong
    Han, Qiaofeng
    Wang, Xin
    [J]. ACS NANO, 2010, 4 (05) : 2822 - 2830
  • [5] Conway B.E., 1999, ELECTROCHEMICAL SUPE, P486
  • [6] Porous graphene-carbon nanotube hybrid paper as a flexible nano-scaffold for polyaniline immobilization and application in all-solid-state supercapacitors
    Fan, Wei
    Miao, Yue-E
    Zhang, Longsheng
    Huang, Yunpeng
    Liu, Tianxi
    [J]. RSC ADVANCES, 2015, 5 (39): : 31064 - 31073
  • [7] Graphene-polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol
    Fan, Yang
    Liu, Jin-Hang
    Yang, Chun-Peng
    Yu, Meng
    Liu, Peng
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2011, 157 (02): : 669 - 674
  • [8] Frackowiak EdE., 2013, Supercapacitors: Materials, Systems and Applications
  • [9] Hosseini M., 2015, Int J Nanosci Nanotechnol, V11, P147
  • [10] Hosseini MG, 2016, IRAN CHEM COMMUN, V4, P67