Unsupervised Phonocardiogram Analysis With Distribution Density Based Variational Auto-Encoders

被引:1
作者
Li, Shengchen [1 ]
Tian, Ke [2 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Interlligent Sci, Suzhou, Peoples R China
[2] Beijing Univ Posts & Telecommun, Coll Elect Engn, Beijing, Peoples R China
关键词
phonocardiogram analysis; auto-encoder; data density; unsupervised learning; abnormality detection;
D O I
10.3389/fmed.2021.655084
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This paper proposes an unsupervised way for Phonocardiogram (PCG) analysis, which uses a revised auto encoder based on distribution density estimation in the latent space. Auto encoders especially Variational Auto-Encoders (VAEs) and its variant beta-VAE are considered as one of the state-of-the-art methodologies for PCG analysis. VAE based models for PCG analysis assume that normal PCG signals can be represented by latent vectors that obey a normal Gaussian Model, which may not be necessary true in PCG analysis. This paper proposes two methods DBVAE and DBAE that are based on estimating the density of latent vectors in latent space to improve the performance of VAE based PCG analysis systems. Examining the system performance with PCG data from the a single domain and multiple domains, the proposed systems outperform the VAE based methods. The representation of normal PCG signals in the latent space is also investigated by calculating the kurtosis and skewness where DBAE introduces normal PCG representation following Gaussian-like models but DBVAE does not introduce normal PCG representation following Gaussian-like models.
引用
收藏
页数:6
相关论文
共 14 条
[1]   Statistical feature embedding for heart sound classification [J].
Adiban, Mohammad ;
BabaAli, Bagher ;
Shehnepoor, Saeedreza .
JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2019, 70 (04) :259-272
[2]  
Aggarwal C. C., 2001, SIGMOD Record, V30, P37, DOI 10.1145/376284.375668
[3]  
Banerjee R, 2020, INT CONF ACOUST SPEE, P1249, DOI [10.1109/icassp40776.2020.9054632, 10.1109/ICASSP40776.2020.9054632]
[4]  
Grzegorczyk I, 2016, COMPUT CARDIOL CONF, V43, P1129
[5]  
Higgins I., 2017, ICLR 2017
[6]   An Introduction to Variational Autoencoders [J].
Kingma, Diederik P. ;
Welling, Max .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 12 (04) :4-89
[7]  
Koike T, 2020, IEEE ENG MED BIO, P74, DOI 10.1109/EMBC44109.2020.9175450
[8]  
Koizumi Y, 2019, IEEE WORK APPL SIG, P313, DOI [10.1109/waspaa.2019.8937164, 10.1109/WASPAA.2019.8937164]
[9]  
Li S., 2021, ARXIV PREPRINT ARXIV, DOI [10.1109/ICASSP39728.2021.9414165, DOI 10.1109/ICASSP39728.2021.9414165]
[10]   An open access database for the evaluation of heart sound algorithms [J].
Liu, Chengyu ;
Springer, David ;
Li, Qiao ;
Moody, Benjamin ;
Juan, Ricardo Abad ;
Chorro, Francisco J. ;
Castells, Francisco ;
Roig, Jose Millet ;
Silva, Ikaro ;
Johnson, Alistair E. W. ;
Syed, Zeeshan ;
Schmidt, Samuel E. ;
Papadaniil, Chrysa D. ;
Hadjileontiadis, Leontios ;
Naseri, Hosein ;
Moukadem, Ali ;
Dieterlen, Alain ;
Brandt, Christian ;
Tang, Hong ;
Samieinasab, Maryam ;
Samieinasab, Mohammad Reza ;
Sameni, Reza ;
Mark, Roger G. ;
Clifford, Gari D. .
PHYSIOLOGICAL MEASUREMENT, 2016, 37 (12) :2181-2213