Braided bosonization and inhomogeneous quantum groups

被引:3
作者
Drabant, B [1 ]
机构
[1] KATHOLIEKE UNIV LEUVEN,DEPT MATH,B-3001 LOUVAIN,BELGIUM
关键词
braided categories; braided Hopf algebras; bosonization;
D O I
10.1007/BF00116518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasitriangular Hopf algebras in braided tensor categories introduced by Majid. It is known that a quasitriangular Hopf algebra H in a braided monoidal category C induces a braiding in a full monoidal subcategory of the category of H-modules in C. Within this subcategory, a braided version of the bosonization theorem with respect to the category C will be proved. An example of braided monoidal categories with quasitriangular structure deviating from the ordinary case of symmetric tensor categories of a vector spaces; is provided by certain braided supersymmetric tensor categories. Braided inhomogeneous quantum groups like the dilaton free q-Poincare group are explicit applications.
引用
收藏
页码:117 / 132
页数:16
相关论文
共 16 条
[1]   TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01) :159-165
[2]   BICOVARIANT DIFFERENTIAL-CALCULUS ON QUANTUM GROUPS SUQ(N) AND SOQ(N) [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
WATAMURA, S ;
WEICH, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (03) :605-641
[3]   COMPLEX QUANTUM GROUPS AND THEIR QUANTUM ENVELOPING-ALGEBRAS [J].
DRABANT, B ;
SCHLIEKER, M ;
WEICH, W ;
ZUMINO, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (03) :625-633
[4]  
DRABANT B, 1994, BRAIDED SUPERSYMMETR
[5]  
Drinfeld V. G., 1986, P INT C MATHEMATICAN, P798
[6]  
Faddeev L D., 1990, LENINGRAD MATH J, V1, P193
[7]  
JOYAL A, 1986, 86008 MACQ U
[8]  
Maclane S., 1972, GRADUATE TEXTS MATH, V5
[9]   BRAIDED GROUPS [J].
MAJID, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 86 (02) :187-221
[10]   TRANSMUTATION THEORY AND RANK FOR QUANTUM BRAIDED GROUPS [J].
MAJID, S .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 113 :45-70