A comparison of numerical integration rules for the meshless local Petrov-Galerkin method

被引:30
|
作者
Mazzia, Annamaria [1 ]
Ferronato, Massimiliano [1 ]
Pini, Giorgio [1 ]
Gambolati, Giuseppe [1 ]
机构
[1] Univ Studi Padova, Dipartimento Modell Matemat Sci Appl, I-35121 Padua, Italy
关键词
meshless methods; meshless local Petrov-Galerkin method; numerical integration rules;
D O I
10.1007/s11075-007-9110-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The meshless local Petrov-Galerkin (MLPG) method is a mesh-free procedure for solving partial differential equations. However, the benefit in avoiding the mesh construction and refinement is counterbalanced by the use of complicated non polynomial shape functions with subsequent difficulties, and a potentially large cost, when implementing numerical integration schemes. In this paper we describe and compare some numerical quadrature rules with the aim at preserving the MLPG solution accuracy and at the same time reducing its computational cost.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [31] Meshless local Petrov-Galerkin method for large deformation analysis
    Xiong, Yuan-Bo
    Cui, Hong-Xue
    Long, Shu-Yao
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2009, 26 (03): : 353 - 357
  • [32] Meshless local Petrov-Galerkin method with complex variables for elasticity
    Yang Xiu-Li
    Dai Bao-Dong
    Li Zhen-Feng
    ACTA PHYSICA SINICA, 2012, 61 (05)
  • [33] A hybrid meshless local Petrov-Galerkin method for unbounded domains
    Deeks, Andrew J.
    Augarde, Charles E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) : 843 - 852
  • [34] The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method
    Atluri, S
    Shen, SP
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (1-2) : 73 - 93
  • [35] Numerical approximation of the fractional HIV model using the meshless local Petrov-Galerkin method
    Phramrung, Kunwithree
    Luadsong, Anirut
    Aschariyaphotha, Nitima
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [36] Multiscale simulation based on the meshless local Petrov-Galerkin (MLPG) method
    Shen, SP
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 5 (03): : 235 - 255
  • [37] Local coordinate approach in meshless local Petrov-Galerkin method for beam problems
    Raju, IS
    Phillips, DR
    AIAA JOURNAL, 2003, 41 (05) : 975 - 978
  • [38] Surface repairing strategy based on meshless local Petrov-Galerkin method
    Wu, Xuemei
    Li, Guixian
    Zhao, Weimin
    Guo, Feng
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2009, 45 (01): : 94 - 100
  • [39] A Finite Element enrichment technique by the Meshless Local Petrov-Galerkin method
    Ferronato, M.
    Mazzia, A.
    Pini, G.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 62 (02): : 205 - 223
  • [40] A finite element enrichment technique by the meshless local petrov-galerkin method
    Ferronato, M.
    Mazzia, A.
    Pini, G.
    CMES - Computer Modeling in Engineering and Sciences, 2010, 62 (02): : 205 - 222