On the basis of our previous work, we introduce novel fully discrete, fully practical parametric finite element approximations for geometric evolution equations of curves in the plane The fully implicit approximations are unconditionally stable and intrinsically equidistribute the vertices at each time level We present iterative solution methods for the systems of nonlinear equations arising at each time level and present several numerical results The ideas easily generalize to the evolution of curve networks and to anisotropic surface energies (C) 2010 Wiley Periodicals Inc Numer Methods Partial Differential Eq 27 1-30 2011
机构:Univ Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, Argentina
Bänsch, E
;
Morin, P
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, ArgentinaUniv Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, Argentina
Morin, P
;
Nochetto, RH
论文数: 0引用数: 0
h-index: 0
机构:Univ Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, Argentina
机构:Univ Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, Argentina
Bänsch, E
;
Morin, P
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, ArgentinaUniv Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, Argentina
Morin, P
;
Nochetto, RH
论文数: 0引用数: 0
h-index: 0
机构:Univ Nacl Litoral, Fac Ingn Quim, IMAL, RA-3000 Guemes, Santa Fe, Argentina