Graphitic Carbon Nitrides: Modifications and Applications in Environmental Purification

被引:25
作者
Cui Yanjuan [1 ]
Wang Yuxiong [1 ]
Wang Hao [1 ]
Chen Fangyan [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Peoples R China
基金
中国国家自然科学基金;
关键词
photocatalytisis; graphitic carbon nitride; pollutant; degradation; IN-SITU SYNTHESIS; ENHANCED PHOTOCATALYTIC ACTIVITY; METAL-FREE HETEROJUNCTION; VISIBLE-LIGHT ABSORPTION; CO2; REDUCTION; COMPOSITE PHOTOCATALYST; EFFICIENT PHOTOCATALYST; POLYMERIC-SEMICONDUCTOR; HETEROGENEOUS CATALYST; FACILE SYNTHESIS;
D O I
10.7536/PC151025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconductor photocatalytic technology can be used for decomposition, conservation and mineralization of environmental pollutants, so it is a long-term effective approach to purify environmental pollution. Polymer semiconductor graphitic carbon nitride (g-C3N4), a new-type metal-free functional material, possesses distinct electronic structure and chemical property, and has attracted a wide spread attention in clean energy conversation and chemical synthesis using solar power. In recent years, the development of g-C3N4 makes further progress of environmental purification research using semiconductor photocatalytic technology. In this review, some important advances using g-C3N4 as novel photocatalysts for environmental pollutants treatment have been reviewed, including degradation of aqueous organic pollutant, inactivation of bacteria, removal of atmospheric contaminant, detoxication of heavy metal ion, and reduction or conversation of CO2. High efficiency and stability can be maintained during photocatalytic reaction process. For further improve the catalytic efficiency of g-C3N4 many works for structure optimization have been researched. Taking the utilization in degradation of organic pollutant as examples, the modifications of g-C3N4 for photocatalytic performance optimization are summarized, including structure optimization, surface and doping modification, composite semiconductor. The photocatalytic reaction mechanisms of g-C3N4 for pollutants degradation and CO2 reduction are elucidated. In addition, the prospects for the development of g-C3N4 based semiconductor materials and application in environment pollutants treatment are also discussed.
引用
收藏
页码:428 / 437
页数:10
相关论文
共 114 条
[1]   Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis [J].
Bai, Song ;
Wang, Xijun ;
Hu, Canyu ;
Xie, Maolin ;
Jiang, Jun ;
Xiong, Yujie .
CHEMICAL COMMUNICATIONS, 2014, 50 (46) :6094-6097
[2]   Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts [J].
Cao, Shao-Wen ;
Liu, Xin-Feng ;
Yuan, Yu-Peng ;
Zhang, Zhen-Yi ;
Liao, Yu-Sen ;
Fang, Jun ;
Loo, Say Chye Joachim ;
Sum, Tze Chien ;
Xue, Can .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :940-946
[3]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[4]   Engineering Light: Advances in Wavelength Conversion Materials for Energy and Environmental Technologies [J].
Cates, Ezra L. ;
Chinnapongse, Stephanie L. ;
Kim, Jae-Hyuk ;
Kim, Jae-Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (22) :12316-12328
[5]   Fullerene modified C3N4 composites with enhanced photocatalytic activity under visible light irradiation [J].
Chai, Bo ;
Liao, Xiang ;
Song, Fakun ;
Zhou, Huan .
DALTON TRANSACTIONS, 2014, 43 (03) :982-989
[6]   Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation [J].
Chang, Chun ;
Fu, Yu ;
Hu, Meng ;
Wang, Chunying ;
Shan, Guoqiang ;
Zhu, Lingyan .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 :553-560
[7]   Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite [J].
Chen, Daimei ;
Wang, Kewei ;
Hong, Wangzhi ;
Zong, Ruilong ;
Yao, Wenqing ;
Zhu, Yongfa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 166 :366-373
[8]   Significantly enhancement of photocatalytic performances via core-shell structure of ZnO@mpg-C3N4 [J].
Chen, Daimei ;
Wang, Kewei ;
Xiang, Dugao ;
Zong, Ruilong ;
Yao, Wenqing ;
Zhu, Yongfa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :554-561
[9]   A Simple Strategy for the Preparation of g-C3N4/SnO2 Nanocomposite Photocatalysts [J].
Chen, Lu-Ya ;
Zhang, Wei-De .
SCIENCE OF ADVANCED MATERIALS, 2014, 6 (06) :1091-1098
[10]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570