New characterizations of Hajlasz-Sobolev spaces on metric spaces

被引:76
作者
Yang, DC [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2003年 / 46卷 / 05期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Sobolev space; Lipschitz-type space; embedding theorem; maximal function; space of homogeneous type;
D O I
10.1360/02ys0343
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces the fractional Sobolev spaces on spaces of homogeneous type, including metric spaces and fractals. These Sobolev spaces include the well-known Hajlasz-Sobolev spaces as special models. The author establishes various characterizations of (sharp) maximal functions for these spaces. As applications, the author identifies the fractional Sobolev spaces with some Lipscitz-type spaces. Moreover, some embedding theorems are also given.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 26 条
  • [1] Barlow M., 1998, LECT NOTES MATH, V1690, P1
  • [2] Brownian motion and harmonic analysis on Sierpinski carpets
    Barlow, MT
    Bass, RF
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04): : 673 - 744
  • [3] Coifman RR., 1971, Lect. Notes Math., DOI 10.1007/BFb0058946
  • [4] DEVORE RA, 1984, MEM AM MATH SOC, V47, P1
  • [5] Definitions of Sobolev classes on metric spaces
    Franchi, B
    Hajlasz, P
    Koskela, P
    [J]. ANNALES DE L INSTITUT FOURIER, 1999, 49 (06) : 1903 - +
  • [6] Heat kernels on metric measure spaces and an application to semilinear elliptic equations
    Grigor'yan, A
    Hu, JX
    Lau, KS
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) : 2065 - 2095
  • [7] Hajlasz P, 1996, POTENTIAL ANAL, V5, P403
  • [8] Hajlasz P, 1998, REV MAT IBEROAM, V14, P601
  • [9] Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
  • [10] Han Y., 2002, DISS MATH, V403, P1, DOI DOI 10.4064/dm403-0-1