Sparse Representation Feature for Facial Expression Recognition

被引:2
作者
Yue, Caitong [1 ]
Liang, Jing [1 ]
Qu, Boyang [2 ]
Lu, Zhuopei [1 ]
Li, Baolei [3 ]
Han, Yuhong [4 ,5 ]
机构
[1] Zhengzhou Univ, Sch Elect Engn, Zhengzhou, Henan, Peoples R China
[2] Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou, Henan, Peoples R China
[3] Nanyang Normal Univ, Phys & Elect Engn Coll, Nanyang, Peoples R China
[4] South China Univ Technol, MOE Key Lab Specially Funct Mat, Guangzhou, Peoples R China
[5] South China Univ Technol, Inst Opt Commun Mat, Guangzhou, Peoples R China
来源
PROCEEDINGS OF ELM-2017 | 2019年 / 10卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Facial expression recognition; Sparse representation; Extreme learning machine; TELM;
D O I
10.1007/978-3-030-01520-6_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial expression recognition is a challenging task, because it is difficult to recognize facial expressions of different persons if they are of diverse races and ages. Extracting distinctive feature from original facial image is a critical step for successful facial expression recognition. This paper proposes sparse representation feature for facial expression recognition. First of all, a dictionary is established using training images. Then sparse representation feature is extracted by sparse representation orthogonal matching pursuit method. Finally the extracted features of different expressions are classified by two-hidden-layer extreme learning machine. Facial expression images of both Cohn-Kanade and JAFFE databases are classified using sparse representation feature. Experimental results show that the sparse representation feature is suitable for facial expression recognition.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 2005, HDB FACE RECOGNITION
[2]   CONSTANTS ACROSS CULTURES IN FACE AND EMOTION [J].
EKMAN, P ;
FRIESEN, WV .
JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 1971, 17 (02) :124-&
[3]   Wavelet feature selection for image classification [J].
Huang, Ke ;
Aviyente, Selin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (09) :1709-1720
[4]   Gabor Feature-Based Collaborative Representation for Hyperspectral Imagery Classification [J].
Jia, Sen ;
Shen, Linlin ;
Li, Qingquan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (02) :1118-1129
[5]  
Jiang B, 2008, PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P407, DOI 10.1109/ICMLC.2008.4620440
[6]  
Kharat G. U., 2008, WSEAS Transactions on Computers, V7, P650
[7]   PCA Feature Extraction for Change Detection in Multidimensional Unlabeled Data [J].
Kuncheva, Ludmila I. ;
Faithfull, William J. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (01) :69-80
[8]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[9]   Facial Expression Recognition Using Stationary Wavelet Transform Features [J].
Qayyum, Huma ;
Majid, Muhammad ;
Anwar, Syed Muhammad ;
Khan, Bilal .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
[10]   Two-hidden-layer extreme learning machine for regression and classification [J].
Qu, B. Y. ;
Lang, B. F. ;
Liang, J. J. ;
Qin, A. K. ;
Crisalle, O. D. .
NEUROCOMPUTING, 2016, 175 :826-834