The generalized complexity of linear Boolean functions

被引:0
作者
Redkin, Nikolay P. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Boolean function; Boolean circuit; complexity of a Boolean function; Shannon function;
D O I
10.1515/dma-2020-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study generalized (in terms of bases) complexity of implementation of linear Boolean functions by Boolean circuits in arbitrary functionally complete bases; the complexity of a circuit is defined as the number of gates. Let L*(n) be the minimal number of gates sufficient for implementation of an arbitrary linear Boolean function of n variables in an arbitrary functionally complete basis. We show that L*(0) = L*(1) = 3 and L*(n) = 7(n - 1) for any natural n >= 2.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 12 条
[1]   The Minimal Circuits for Linear Boolean Functions [J].
Kombarov, Yu. A. .
MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2011, 66 (06) :260-263
[2]   On minimal circuits for linear functions over some bases [J].
Kombarov, Yu. A. .
DISCRETE MATHEMATICS AND APPLICATIONS, 2013, 23 (01) :39-51
[3]  
Kombarov Yu. A., MOSCOW U MATH B, V68, P114
[4]  
Kombarov Yu. A., 2012, J APPL IND MATH, V19, P39
[5]  
[Комбаров Юрий Анатольевич Kombarov Yurii Anatol’evich], 2013, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V20, P65
[6]  
Lupanov O. B., 1984, ASYMPTOTIC COMPLEXIT
[7]  
Red'kin N. P., 1970, Problemy Kibernetiki, P83
[8]  
Redkin N. P., 1989, MAT VOPR KIBERN, V2, P198
[9]  
Redkin N. P., 1971, KIBERNETIKA, P31
[10]   A generalization of Shannon function [J].
Redkin, Nikolay P. .
DISCRETE MATHEMATICS AND APPLICATIONS, 2018, 28 (05) :309-318