Molecular validation of pathogen-reduction technologies using rolling-circle amplification coupled with real-time PCR for torquetenovirus DNA quantification

被引:1
作者
Focosi, Daniele [1 ]
Macera, Lisa [2 ]
Spezia, Pietro Giorgio [2 ]
Ceccarelli, Francesca [1 ]
Lanza, Maria [1 ]
Maggi, Fabrizio [3 ]
机构
[1] Pisa Univ Hosp, North Western Tuscany Blood Bank, Via Paradisa 2, I-56124 Pisa, Italy
[2] Univ Pisa, Dept Translat Res, Pisa, Italy
[3] Univ Insubria, Dept Med & Surg, Varese, Italy
关键词
pathogen inactivation; pathogen reduction technologies; rolling circle amplification; torquetenovirus; validation; MITOCHONDRIAL-DNA; QUALITY-CONTROL; DENGUE VIRUS; HUMAN VIROME; INACTIVATION; PLASMA; ULTRAVIOLET; AMOTOSALEN; LIGHT; AMUSTALINE;
D O I
10.1111/tme.12807
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Pathogen reduction technologies (PRT) based on nucleic-acid damaging chemicals and/or irradiation are increasingly being used to increase safety of blood components against emerging pathogens, such as convalescent plasma in the ongoing COVID-19 pandemic. Current methods for PRT validation are limited by the resources available to the blood component manufacturer, and quality control rely over pathogen spiking and hence invariably require sacrifice of the tested blood units: quantitative real-time PCR is the current pathogen detection method but, due to the high likelihood of detecting nonviable fragments, requires downstream pathogen culture. We propose here a new molecular validation of PRT based on the highly prevalent human symbiont torquetenovirus (TTV) and rolling circle amplification (RCA). Materials and methods Serial apheresis plasma donations were tested for TTV before and after inactivation with Intercept (R) PRT using real-time quantitative PCR (conventional validation), RCA followed by real-time PCR (our validation), and reverse PCR (for cross-validation). Results While only 20% of inactivated units showed significant decrease in TTV viral load using real-time qPCR, all donations tested with RCA followed by real-time PCR showed TTV reductions. As further validation, 2 units were additionally tested with reverse PCR, which confirmed absence of entire circular genomes. Discussion We have described and validated a conservative and easy-to-setup protocol for molecular validation of PRT based on RCA and real-time PCR for TTV.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 28 条
[1]   Pathogen inactivation of Dengue virus in red blood cells using amustaline and glutathione [J].
Aubry, Maite ;
Laughhunn, Andrew ;
Santa Maria, Felicia ;
Lanteri, Marion C. ;
Stassinopoulos, Adonis ;
Musso, Didier .
TRANSFUSION, 2017, 57 (12) :2888-2896
[2]   Inactivation of Zika virus in plasma with amotosalen and ultraviolet A illumination [J].
Aubry, Maite ;
Richard, Vaea ;
Green, Jennifer ;
Broult, Julien ;
Musso, Didier .
TRANSFUSION, 2016, 56 (01) :33-40
[3]   Development of a mitochondrial DNA real-time polymerase chain reaction assay for quality control of pathogen reduction with riboflavin and ultraviolet light [J].
Bakkour, S. ;
Chafets, D. M. ;
Wen, L. ;
van der Meer, P. F. ;
Mundt, J. M. ;
Marschner, S. ;
Goodrich, R. P. ;
Busch, M. P. ;
Lee, T-H. .
VOX SANGUINIS, 2014, 107 (04) :351-359
[4]   Assessment of nucleic acid modification induced by amotosalen and ultraviolet A light treatment of platelets and plasma using real-time polymerase chain reaction amplification of variable length fragments of mitochondrial DNA [J].
Bakkour, Sonia ;
Chafets, Daniel M. ;
Wen, Li ;
Dupuis, Kent ;
Castro, Grace ;
Green, Jennifer M. ;
Stassinopoulos, Adonis ;
Busch, Michael P. ;
Lee, Tzong-Hae .
TRANSFUSION, 2016, 56 (02) :410-420
[5]   Effect of the psoralen-based photochemical pathogen inactivation on mitochondrial DNA in platelets [J].
Bruchmüller, I ;
Lösel, R ;
Bugert, P ;
Corash, L ;
Lin, L ;
Klütner, H ;
Janetzko, K .
PLATELETS, 2005, 16 (08) :441-445
[6]   Red blood cell concentrates treated with the amustaline (S-303) pathogen reduction system and stored for 35 days retain post-transfusion viability: results of a two-centre study [J].
Cancelas, J. A. ;
Gottschall, J. L. ;
Rugg, N. ;
Graminske, S. ;
Schott, M. A. ;
North, A. ;
Huang, N. ;
Mufti, N. ;
Erickson, A. ;
Rico, S. ;
Corash, L. .
VOX SANGUINIS, 2017, 112 (03) :210-218
[7]  
Chatterjee Kabita, 2016, Asian J Transfus Sci, V10, P127, DOI 10.4103/0973-6247.187946
[8]   Temporal Response of the Human Virome to Immunosuppression and Antiviral Therapy [J].
De Vlaminck, Iwijn ;
Khush, Kiran K. ;
Strehl, Calvin ;
Kohli, Bitika ;
Luikart, Helen ;
Neff, Norma F. ;
Okamoto, Jennifer ;
Snyder, Thomas M. ;
Cornfield, David N. ;
Nicolls, Mark R. ;
Weill, David ;
Bernstein, Daniel ;
Valantine, Hannah A. ;
Quake, Stephen R. .
CELL, 2013, 155 (05) :1178-1187
[9]   Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus [J].
Fahsbender, Elizabeth ;
da-Costa, Antonio Charlys ;
Gill, Danielle Elise ;
Milagres, Flavio Augusto de Padua ;
Brustulin, Rafael ;
Monteiro, Fred Julio Costa ;
Rego, Marlisson Octavio da Silva ;
Ribeiro, Edcelha Soares D'Athaide ;
Sabino, Ester Cerdeira ;
Delwart, Eric .
PLOS ONE, 2020, 15 (03)
[10]   Assessment of prevalence and load of torquetenovirus viraemia in a large cohort of healthy blood donors [J].
Focosi, D. ;
Spezia, P. G. ;
Macera, L. ;
Salvadori, S. ;
Navarro, D. ;
Lanza, M. ;
Antonelli, G. ;
Pistello, M. ;
Maggi, F. .
CLINICAL MICROBIOLOGY AND INFECTION, 2020, 26 (10) :1406-1410