Mechanism of coupled folding and binding of an intrinsically disordered protein

被引:838
作者
Sugase, Kenji
Dyson, H. Jane
Wright, Peter E.
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] Suntory Inst Bioorgan Res, Shimamoto, Osaka 6188503, Japan
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature05858
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein folding and binding are analogous processes, in which the protein 'searches' for favourable intramolecular or intermolecular interactions on a funnelled energy landscape(1,2). Many eukaryotic proteins are disordered under physiological conditions, and fold into ordered structures only on binding to their cellular targets(3-6). The mechanism by which folding is coupled to binding is poorly understood, but it has been hypothesized on theoretical grounds that the binding kinetics may be enhanced by a 'fly-casting' effect, where the disordered protein binds weakly and non-specifically to its target and folds as it approaches the cognate binding site(7). Here we show, using NMR titrations and N-15 relaxation dispersion, that the phosphorylated kinase inducible activation domain (pKID) of the transcription factor CREB forms an ensemble of transient encounter complexes on binding to the KIX domain of the CREB binding protein. The encounter complexes are stabilized primarily by non-specific hydrophobic contacts, and evolve by way of an intermediate to the fully bound state without dissociation from KIX. The carboxy-terminal helix of pKID is only partially folded in the intermediate, and becomes stabilized by intermolecular interactions formed in the final bound state. Future applications of our method will provide new understanding of the molecular mechanisms by which intrinsically disordered proteins perform their diverse biological functions.
引用
收藏
页码:1021 / U11
页数:7
相关论文
共 50 条
[31]   Coupled binding and folding of intrinsically disordered proteins: what can we learn from kinetics? [J].
Gianni, Stefano ;
Dogan, Jakob ;
Jemth, Per .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2016, 36 :18-24
[32]   Understanding the Binding Induced Folding of Intrinsically Disordered Proteins by Protein Engineering: Caveats and Pitfalls [J].
Malagrino, Francesca ;
Visconti, Lorenzo ;
Pagano, Livia ;
Toto, Angelo ;
Troilo, Francesca ;
Gianni, Stefano .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (10)
[33]   Kinetics of folding and binding of an intrinsically disordered protein: The inhibitor of yeast aspartic proteinase YPrA [J].
Narayanan, Ranjani ;
Ganesh, Omjoy K. ;
Edison, Arthur S. ;
Hagen, Stephen J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (34) :11477-11485
[34]   Kinetics of folding and binding of an intrinsically disordered protein: The inhibitor of yeast aspartic proteinase YPrA [J].
Narayanan, Ranjani ;
Ganesh, Omjoy K. ;
Edison, Arthur S. ;
Hagen, Stephen J. .
1600, American Chemical Society (130)
[35]   Molecular Recognition by Templated Folding of an Intrinsically Disordered Protein [J].
Toto, Angelo ;
Camilloni, Carlo ;
Giri, Rajanish ;
Brunori, Maurizio ;
Vendruscolo, Michele ;
Gianni, Stefano .
SCIENTIFIC REPORTS, 2016, 6
[36]   Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch [J].
Alaji Bah ;
Robert M. Vernon ;
Zeba Siddiqui ;
Mickaël Krzeminski ;
Ranjith Muhandiram ;
Charlie Zhao ;
Nahum Sonenberg ;
Lewis E. Kay ;
Julie D. Forman-Kay .
Nature, 2015, 519 :106-109
[37]   Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch [J].
Bah, Alaji ;
Vernon, Robert M. ;
Siddiqui, Zeba ;
Krzeminski, Mickael ;
Muhandiram, Ranjith ;
Zhao, Charlie ;
Sonenberg, Nahum ;
Kay, Lewis E. ;
Forman-Kay, Julie D. .
NATURE, 2015, 519 (7541) :106-U240
[38]   Molecular Recognition by Templated Folding of an Intrinsically Disordered Protein [J].
Angelo Toto ;
Carlo Camilloni ;
Rajanish Giri ;
Maurizio Brunori ;
Michele Vendruscolo ;
Stefano Gianni .
Scientific Reports, 6
[39]   Free Energy Profile and Kinetics of Coupled Folding and Binding of the Intrinsically Disordered Protein p53 with MDM2 [J].
Zou, Rongfeng ;
Zhou, Yang ;
Wang, Yong ;
Kuang, Guanglin ;
Agren, Hans ;
Wu, Junchen ;
Tu, Yaoquan .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (03) :1551-1558
[40]   The transition state structure for coupled binding and folding of disordered protein domains [J].
Dogan, Jakob ;
Mu, Xin ;
Engstrom, Ake ;
Jemth, Per .
SCIENTIFIC REPORTS, 2013, 3