Subquadratic Space Complexity Multiplier Using Even Type GNB Based on Efficient Toeplitz Matrix-Vector Product

被引:0
作者
Park, Sun-Mi [1 ]
Chang, Ku-Young [2 ]
Hong, Dowon [1 ]
Seo, Changho [1 ]
机构
[1] Kongju Natl Univ, Dept Appl Math, Gongju Si 32588, Chungnam, South Korea
[2] ETRI, Intelligent Secur Res Grp, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
Subquadratic space complexity multiplier; parallel multiplier; Gaussian normal basis; Toeplitz matrix-vector product; finite field;
D O I
10.1109/TC.2018.2836425
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Multiplication schemes based on Toeplitz matrix-vector product (TMVP) have been proposed by many researchers. TMVP can be computed using the recursive two-way and three-way split methods, which are composed of four blocks. Among them, we improve the space complexity of the component matrix formation (CMF) block. This result derives the improvements of multiplication schemes based on TMVP. Also, we present a subquadratic space complexity G F(2(m)) multiplier with even type Gaussian normal basis (GNB). In order to design the multiplier, we formulate field multiplication as a sum of two TMVPs and efficiently compute the sum. As a result, for type 2 and 4 GNBs, the proposed multipliers outperform other similar schemes. The proposed type 6 GNB is the first subquadrtic space complexity multiplier with its explicit complexity formula.
引用
收藏
页码:1794 / 1805
页数:12
相关论文
共 15 条
  • [1] Improved Area-Time Tradeoffs for Field Multiplication Using Optimal Normal Bases
    Adikari, J.
    Barsoum, A.
    Hasan, M. A.
    Namin, A. H.
    Negre, C.
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (01) : 193 - 199
  • [2] [Anonymous], 2000, IEEE 1363 2000
  • [3] LOW COMPLEXITY NORMAL BASES
    ASH, DW
    BLAKE, IF
    VANSTONE, SA
    [J]. DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) : 191 - 210
  • [4] Bernstein DJ, 2010, LECT NOTES COMPUT SC, V6087, P41, DOI 10.1007/978-3-642-13797-6_4
  • [5] Bernstein DJ, 2009, LECT NOTES COMPUT SC, V5677, P317, DOI 10.1007/978-3-642-03356-8_19
  • [6] Overlap-free Karatsuba-Ofman polynomial multiplication algorithms
    Fan, H.
    Sun, J.
    Gu, M.
    Lam, K. -Y.
    [J]. IET INFORMATION SECURITY, 2010, 4 (01) : 8 - 14
  • [7] Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases
    Fan, Haining
    Hasan, M. Anwar
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2007, 56 (10) : 1435 - 1437
  • [8] A new approach to subquadratic space complexity parallel multipliers for extended binary fields
    Fan, Haining
    Hasan, M. Anwar
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2007, 56 (02) : 224 - 233
  • [9] Hasan M. A., 2010, 201019 CACR U WAT
  • [10] Block Recombination Approach for Subquadratic Space Complexity Binary Field Multiplication Based on Toeplitz Matrix-Vector Product
    Hasan, M. Anwar
    Meloni, Nicolas
    Namin, Ashkan Hosseinzadeh
    Negre, Christophe
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2012, 61 (02) : 151 - 163