Phase clustering and transition to phase synchronization in a large number of coupled nonlinear oscillators

被引:48
作者
Liu, ZH [1 ]
Lai, YC
Hoppensteadt, FC
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.055201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The transition to phase synchronization in systems consisting of a large number (N) of coupled nonlinear oscillators via the route of phase clustering (phase synchronization among subsets of oscillators) is investigated. We elucidate the mechanism for the merger of phase clusters and find an algebraic scaling between the critical coupling parameter required for phase synchronization and N. Our result implies that, in realistic situations, phase clustering may be more prevalent than full phase synchronization.
引用
收藏
页码:552011 / 552014
页数:4
相关论文
共 28 条
  • [1] Noise scaling of phase synchronization of chaos
    Andrade, V
    Davidchack, RL
    Lai, YC
    [J]. PHYSICAL REVIEW E, 2000, 61 (03): : 3230 - 3233
  • [2] Complex dynamics and phase synchronization in spatially extended ecological systems
    Blasius, B
    Huppert, A
    Stone, L
    [J]. NATURE, 1999, 399 (6734) : 354 - 359
  • [3] ERGOD, 1985, THEORY DYN SYST, V5, P341
  • [4] Synchronization of nonlinear systems with distinct parameters: Phase synchronization and metamorphosis
    Fujigaki, H
    Nishi, M
    Shimada, T
    [J]. PHYSICAL REVIEW E, 1996, 53 (04): : 3192 - 3197
  • [5] FRACTAL BASIN BOUNDARIES, LONG-LIVED CHAOTIC TRANSIENTS, AND UNSTABLE-UNSTABLE PAIR BIFURCATION
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (13) : 935 - 938
  • [6] Hoppensteadt F. C., 1997, WEAKLY CONNECTED NEU
  • [7] Horowitz P, 1989, ART ELECT
  • [8] Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance
    Hu, BB
    Zhou, CS
    [J]. PHYSICAL REVIEW E, 2000, 61 (02) : R1001 - R1004
  • [9] KURAMOTO Y, 1974, PROG THEOR PHYS SUPP, V79, P223
  • [10] Riddling bifurcation in chaotic dynamical systems
    Lai, YC
    Grebogi, C
    Yorke, JA
    Venkataramani, SC
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 55 - 58