Regional Actual Evapotranspiration Estimation with Land and Meteorological Variables Derived from Multi-Source Satellite Data

被引:35
|
作者
Wu, Bingfang [1 ,2 ]
Zhu, Weiwei [1 ]
Yan, Nana [1 ]
Xing, Qiang [1 ]
Xu, Jiaming [1 ,2 ]
Ma, Zonghan [1 ,2 ]
Wang, Linjiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100190, Peoples R China
关键词
evapotranspiration; remote sensing; surface energy balance; Heihe River Basin; ENERGY-BALANCE; SOLAR-RADIATION; HEAT-FLUX; SURFACE-TEMPERATURE; EDDY-COVARIANCE; RIVER-BASIN; TERRESTRIAL EVAPOTRANSPIRATION; AERODYNAMIC ROUGHNESS; SOIL-MOISTURE; MODIS;
D O I
10.3390/rs12020332
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Evapotranspiration (ET) is one of the components in the water cycle and the surface energy balance systems. It is fundamental information for agriculture, water resource management, and climate change research. This study presents a scheme for regional actual evapotranspiration estimation using multi-source satellite data to compute key land and meteorological variables characterizing land surface, soil, vegetation, and the atmospheric boundary layer. The algorithms are validated using ground observations from the Heihe River Basin of northwest China. Monthly data estimates at a resolution of 1 km from the proposed algorithms compared well with ground observation data, with a root mean square error (RMSE) of 0.80 mm and a mean relative error (MRE) of -7.11%. The overall deviation between the average yearly ET derived from the proposed algorithms and ground-based water balance measurements was 9.44% for a small watershed and 1% for the entire basin. This study demonstrates that both accuracy and spatial depiction of actual evapotranspiration estimation can be significantly improved by using multi-source satellite data to measure the required land surface and meteorological variables. This reduces dependence on spatial interpolation of ground-derived meteorological variables which can be problematic, especially in data-sparse regions, and allows the production of region-wide ET datasets.
引用
收藏
页数:23
相关论文
empty
未找到相关数据