A brief note on fractal dynamics of fractional Mandelbrot sets

被引:15
作者
Wang, Yupin [1 ]
Li, Xiaodi [1 ]
Wang, Da [2 ]
Liu, Shutang [3 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
[2] Shandong Normal Univ, Res Ctr Dynam Syst & Control Sci, Business Sch, Jinan 250358, Shandong, Peoples R China
[3] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal; Quadraticmap; Discretefractionalcalculus; Connectivity; Disturbance; GENERALIZED M-SET; DIMENSION; NOISE; ORDER; AREA;
D O I
10.1016/j.amc.2022.127353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper preliminary examines a kind of Mandelbrot set generated by a fractional differ-ence quadratic map involving Caputo-like fractional h-difference operators. A connectivity index is proposed based on numerical methods, which avoids difficulties in discussion at the topological level. The dynamics of those sets in two kinds of noise environments are considered involving connectivity, symmetry and dimension. Several typical cases are vi-sualized to illustrate the main conclusions.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 40 条
[1]   On a numerical approximation of the boundary structure and of the area of the Mandelbrot set [J].
Andreadis, Ioannis ;
Karakasidis, Theodoros E. .
NONLINEAR DYNAMICS, 2015, 80 (1-2) :929-935
[2]   On numerical approximations of the area of the generalized Mandelbrot sets [J].
Andreadis, Ioannis ;
Karakasidis, Theodoros E. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (23) :10974-10982
[3]   On a topological closeness of perturbed Mandelbrot sets [J].
Andreadis, Ioannis ;
Karakasidis, Theodoros E. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (10) :3674-3683
[4]  
[Anonymous], 2013, Advances in Harmonic Analysis and Operator Theory. Operator Theory: Advances and Applications
[5]   On perturbations of the Mandelbrot map [J].
Argyris, J ;
Andreadis, I ;
Karakasidis, TE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1131-1136
[6]   Stability analysis of Caputo-like discrete fractional systems [J].
Baleanu, Dumitru ;
Wu, Guo-Cheng ;
Bai, Yun-Ru ;
Chen, Fu-Lai .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :520-530
[7]   Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model [J].
Chu, Yu-Ming ;
Bekiros, Stelios ;
Zambrano-Serrano, Ernesto ;
Orozco-Lopez, Onofre ;
Lahmiri, Salim ;
Jahanshahi, Hadi ;
Aly, Ayman A. .
CHAOS SOLITONS & FRACTALS, 2021, 145
[8]   The discrete fractional order difference applied to an epidemic model with indirect transmission [J].
Coll, Carmen ;
Herrero, Alicia ;
Ginestar, Damian ;
Sanchez, Elena .
APPLIED MATHEMATICAL MODELLING, 2022, 103 :636-648
[9]  
DOUADY A, 1982, CR ACAD SCI I-MATH, V294, P123
[10]   On stability of fixed points and chaos in fractional systems [J].
Edelman, Mark .
CHAOS, 2018, 28 (02)