Universality and chaos for tensor products of operators

被引:30
作者
Martínez-Giménez, F
Peris, A [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, ETS Arquitectura, E-46071 Valencia, Spain
[2] Univ Politecn Valencia, Dept Matemat Aplicada, ETSI Agron, E-46071 Valencia, Spain
关键词
universality; hypercyclic vectors; tensor products of operators; chaotic dynamics;
D O I
10.1016/S0021-9045(03)00118-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give sufficient conditions for the universality of tensor products {T-n(⊗) over tilde R-n : n is an element of N} of sequences of operators defined on Frechet spaces. in particular we study when the tensor product T (⊗) over tildeR of two operators is chaotic in the sense of Devaney. Applications are given for natural operators on function spaces of several variables, in Infinite Holomorphy, and for multiplication operators on the algebra L(E) following the study of Kit Chan. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:7 / 24
页数:18
相关论文
共 27 条
[1]   Universal functions on complex general linear groups [J].
Abe, Y ;
Zappa, P .
JOURNAL OF APPROXIMATION THEORY, 1999, 100 (02) :221-232
[2]  
Aron Richard M., 1999, CONT MATH, V232, P39
[3]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[4]   Hypercyclic sequences of differential and antidifferential operators [J].
Bernal-González, L .
JOURNAL OF APPROXIMATION THEORY, 1999, 96 (02) :323-337
[5]  
BERNALGONZALEZ L, IN PRESS STUDIA MATH
[6]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112
[7]  
Birkhoff GD, 1929, CR HEBD ACAD SCI, V189, P473
[8]   Hypercyclic and chaotic convolution operators [J].
Bonet, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :253-262
[9]   A Banach space which admits no chaotic operator [J].
Bonet, J ;
Martínez-Giménez, F ;
Peris, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :196-198
[10]   Hypercyclic operators on non-normable Frechet spaces [J].
Bonet, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :587-595