Ion beam irradiation of phase change materials: A route to material properties investigation and engineering

被引:10
作者
Privitera, S. M. S. [1 ]
Rimini, E. [1 ,2 ]
机构
[1] Natl Res Council CNR, Inst Microelect & Microsyst IMM, Zona Ind Ottava Str 5, I-95121 Catania, Italy
[2] Univ Catania, Dipartimento Fis & Astron, Via S Sofia 64, I-95123 Catania, Italy
关键词
Phase change; Ion irradiation; Doping; Amorphization; Disordering; GE2SB2TE5; THIN-FILMS; AMORPHOUS GE2SB2TE5; IN-SITU; GETE; CRYSTALLIZATION; TRANSITION; NUCLEATION; VACANCIES; DISORDER; DEFECTS;
D O I
10.1016/j.mssp.2021.106087
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we review the effects of ion beam irradiation on phase change materials. We report and discuss the results of experiments with light, medium and heavy ions, with energies in the range of 10-200 keV. Light ions, from carbon to fluorine, have been adopted as dopants, with the purpose to increase the crystallization temperature, without inducing structural or electronic modifications. Argon, as a medium-light ion, has been employed to produce diluted cascades and therefore for studying the disordering process without melting and quenching, identifying the electronic and structural transitions occurring as the disorder increases from the stable crystalline phase up to complete amorphization. Heavy ions, including Ge, Sb and Bi, have been shown to be a suitable choice to obtain large amorphous areas with properties very similar to the melt-quenched amorphous, as formed in a phase change memory cell. Like melt-quenched regions, phase change films irradiated with heavy ions usually exhibits lower crystallization time, which can be tuned with the ion fluence. Results on GeTe and GeSbTe alloys are compared. The mechanisms producing the main observed effects are discussed, underlying the crucial role of the vacancy and of the atomic mobility.
引用
收藏
页数:12
相关论文
共 69 条
[31]   In situ observations of the reversible vacancy ordering process in van der Waals-bonded Ge-Sb-Te thin films and GeTe-Sb2Te3 superlattices [J].
Lotnyk, Andriy ;
Dankwort, Torben ;
Hilmi, Isom ;
Kienle, Lorenz ;
Rauschenbach, Bernd .
NANOSCALE, 2019, 11 (22) :10838-10845
[32]   Atomic structure and dynamic reconfiguration of layered defects in van der Waals layered Ge-Sb-Te based materials [J].
Lotnyk, Andriy ;
Ross, Ulrich ;
Dankwort, Torben ;
Hilmi, Isom ;
Kienle, Lorenz ;
Rauschenbach, Bernd .
ACTA MATERIALIA, 2017, 141 :92-96
[33]   Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films [J].
Mantovan, R. ;
Fallica, R. ;
Gerami, A. Mokhles ;
Molholt, T. E. ;
Wiemer, C. ;
Longo, M. ;
Gunnlaugsson, H. P. ;
Johnston, K. ;
Masenda, H. ;
Naidoo, D. ;
Ncube, M. ;
Bharuth-Ram, K. ;
Fanciulli, M. ;
Gislason, H. P. ;
Langouche, G. ;
Olafsson, S. ;
Weyer, G. .
SCIENTIFIC REPORTS, 2017, 7
[34]   Single structure widely distributed in a GeTe-Sb2Te3 pseudobinary system:: A rock salt structure is retained by intrinsically containing an enormous number of vacancies within its crystal [J].
Matsunaga, T ;
Kojima, R ;
Yamada, N ;
Kifune, K ;
Kubota, Y ;
Tabata, Y ;
Takata, M .
INORGANIC CHEMISTRY, 2006, 45 (05) :2235-2241
[35]   Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTeSb2Te3 pseudobinary systems [J].
Matsunaga, T ;
Yamada, N ;
Kubota, Y .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2004, 60 :685-691
[36]   Nucleation and grain growth in as deposited and ion implanted GeTe thin films [J].
Mio, A. M. ;
Carria, E. ;
D'Arrigo, G. ;
Gibilisco, S. ;
Miritello, M. ;
Grimaldi, M. G. ;
Rimini, E. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (10) :2197-2201
[37]  
Mott N.F., 1971, Electronic Processes in Noncrystalline Materials
[38]  
Nastasi M., 1996, ION SOLID INTERACTIO
[39]   Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices [J].
Nukala, Pavan ;
Lin, Chia-Chun ;
Composto, Russell ;
Agarwal, Ritesh .
NATURE COMMUNICATIONS, 2016, 7
[40]   Classical-nucleation-theory analysis of priming in chalcogenide phase-change memory [J].
Orava, Jiri ;
Greer, A. Lindsay .
ACTA MATERIALIA, 2017, 139 :226-235