Importance of data selection for machine learning-based atomistic potentials

被引:0
作者
Smith, Justin [1 ]
Nebgen, Benjamin [3 ]
Lubbers, NIcholas [2 ]
Tretiak, Sergei [4 ]
Barros, Kipton [3 ]
机构
[1] Los Alamos Natl Lab, T 1 CNLS, Los Alamos, NM USA
[2] Los Alamos Natl Lab, CCS 3, Los Alamos, NM USA
[3] Los Alamos Natl Lab, Los Alamos, NM USA
[4] Los Alamos Natl Lab, Theoret Div, T 1 CINT, MS B268, Los Alamos, NM USA
来源
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY | 2019年 / 258卷
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
433-COMP
引用
收藏
页数:1
相关论文
共 50 条
[41]   Editorial: Machine Learning-Based Methods for RNA Data Analysis [J].
Peng, Lihong ;
Yang, Jialiang ;
Wang, Minxian ;
Zhou, Liqian .
FRONTIERS IN GENETICS, 2022, 13
[42]   Machine Learning-based Energy Consumption Model for Data Center [J].
Qiao, Lin ;
Yu, Yuanqi ;
Wang, Qun ;
Zhang, Yu ;
Song, Yueming ;
Yu, Xiaosheng .
2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, :3051-3055
[43]   Improving machine learning-based bitewing segmentation with synthetic data [J].
Tolstaya, Ekaterina ;
Tichy, Antonin ;
Paris, Sebastian ;
Schwendicke, Falk .
JOURNAL OF DENTISTRY, 2025, 156
[44]   Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials [J].
Mortazavi, Bohayra ;
Zhuang, Xiaoying ;
Rabczuk, Timon ;
Shapeev, Alexander V. .
MATERIALS HORIZONS, 2023, 10 (06) :1956-1968
[45]   Machine learning of correlated dihedral potentials for atomistic molecular force fields [J].
Pascal Friederich ;
Manuel Konrad ;
Timo Strunk ;
Wolfgang Wenzel .
Scientific Reports, 8
[46]   Machine learning of correlated dihedral potentials for atomistic molecular force fields [J].
Friederich, Pascal ;
Konrad, Manuel ;
Strunk, Timo ;
Wenzel, Wolfgang .
SCIENTIFIC REPORTS, 2018, 8
[47]   Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials [J].
Omranpour, Amir ;
Montero De Hijes, Pablo ;
Behler, Joerg ;
Dellago, Christoph .
JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (17)
[48]   Statistical interpretation of machine learning-based feature importance scores for biomarker discovery [J].
Van Anh Huynh-Thu ;
Saeys, Yvan ;
Wehenkel, Louis ;
Geurts, Pierre .
BIOINFORMATICS, 2012, 28 (13) :1766-1774
[49]   Machine learning-based variable selection for clustered credit risk modelingMachine learning-based variable selection...J. Bosker et al. [J].
Joost Bosker ;
Marc Gürtler ;
Marvin Zöllner .
Journal of Business Economics, 2025, 95 (4) :617-652
[50]   Machine learning-based surrogate modeling for data-driven optimization: a comparison of subset selection for regression techniques [J].
Sun Hye Kim ;
Fani Boukouvala .
Optimization Letters, 2020, 14 :989-1010