Sharp Bounds on (Generalized) Distance Energy of Graphs

被引:4
作者
Alhevaz, Abdollah [1 ]
Baghipur, Maryam [1 ]
Das, Kinkar Ch [2 ]
Shang, Yilun [3 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, POB 316-3619995161, Shahrood, Iran
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
[3] Northumbria Univ, Dept Comp & Informat Sci, Newcastle NE1 8ST, England
关键词
distance energy; distance (signless) Laplacian energy; generalized distance energy; transmission regular graph; Primary: 05C50; 05C12; Secondary: 15A18; SIGNLESS LAPLACIAN ENERGY; EIGENVALUES;
D O I
10.3390/math8030426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a simple connected graph G, let mml:semantics D(G)mml:semantics be the distance matrix, mml:semantics DL(G)mml:semantics be the distance Laplacian matrix, mml:semanticsDQ(G)mml:semantics be the distance signless Laplacian matrix, and mml:semanticsTr(G)mml:semantics be the vertex transmission diagonal matrix of G. We introduce the generalized distance matrix mml:semanticsD alpha (G)=alpha Tr(G)+(1-alpha )D(G)ml:semantics, where mml:semantics alpha is an element of [0,1]mml:semantics. Noting that mml:semanticsD0(G)=D(G),mml:mspace width="3.33333pt"mml:mspacemml:mspace width="3.33333pt"mml:mspacemml:mspace width="3.33333pt"mml:mspace2mml:mfrac12mml:mfrac>(G)=DQ(G),mml:mspace width="3.33333pt"mml:mspacemml:mspace width="3.33333pt"mml:mspace mml:mspace width="3.33333ptmml:mspace D1(G)=Tr(G)mml:semantics and mml:semanticsD alpha (G)-D beta (G)=(alpha-beta )DL(G)mml:semantics, we reveal that a generalized distance matrix ideally bridges the spectral theories of the three constituent matrices. In this paper, we obtain some sharp upper and lower bounds for the generalized distance energy of a graph G involving different graph invariants. As an application of our results, we will be able to improve some of the recently given bounds in the literature for distance energy and distance signless Laplacian energy of graphs. The extremal graphs of the corresponding bounds are also characterized.
引用
收藏
页数:20
相关论文
共 32 条
  • [1] Bounds for the signless Laplacian energy
    Abreu, Nair
    Cardoso, Domingos M.
    Gutman, Ivan
    Martins, Enide A.
    Robbiano, Maria
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2365 - 2374
  • [2] Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph
    Alhevaz, A.
    Baghipur, M.
    Ganie, Hilal A.
    Pirzada, S.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (13) : 2423 - 2440
  • [3] On the Distance Signless Laplacian Spectrum of Graphs
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Ramane, H. S.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2603 - 2621
  • [4] Alhevaz A., SOME BOUNDS DISTANCE
  • [5] ALHEVAZ A, 2019, SYMMETRY-BASEL, V11, DOI DOI 10.3390/sym11121529
  • [6] Alhevaz A, PREPRINT
  • [7] ALHEVAZ A, 2020, MATHEMATICS-BASEL, V8, DOI DOI 10.3390/math8010017
  • [8] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [9] A lower bound for the energy of symmetric matrices and graphs
    Andrade, Enide
    Robbiano, Maria
    San Martin, B.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 513 : 264 - 275
  • [10] On the distance signless Laplacian of a graph
    Aouchiche, Mustapha
    Hansen, Pierre
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06) : 1113 - 1123