ENSEMBLE OF LABEL SPECIFIC FEATURES FOR MULTI-LABEL CLASSIFICATION

被引:0
作者
Wei, Xiaoya [1 ]
Yu, Ziwei [1 ]
Zhang, Changqing [1 ]
Hu, Qinghua [1 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2018年
基金
中国国家自然科学基金;
关键词
multi-label classification; ensemble; LIFT;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we focus on multi-label classification which associates one instance with multiple labels. The approach Label-specIfic FeaTures (LIFT) achieves state-of-the-art performance due to the label-specific features. However, the main limitation of LIFT is the poor local optima in k-means used at training stage. For this issue, in this paper, we propose to mitigate the limitation for high classification accuracy with ensemble way and term our approach as Ensemble of Label specIfic FeaTures (ELIFT). Specifically, our approach firstly constructs multiple LIFT classifiers by using multiple training sets generated by bagging strategy. Furthermore, different classifiers are weighted automatically according to the loss of each classifier. Finally, for each new instance, the predicted label vector is obtained by the weighted ensemble classifiers learned. Experiments conducted on five benchmark datasets demonstrate the performance of the proposed method outperforms the state-of-the-art approaches.
引用
收藏
页数:6
相关论文
共 15 条
[1]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[2]   THE 9TH ANNUAL MLSP COMPETITION: NEW METHODS FOR ACOUSTIC CLASSIFICATION OF MULTIPLE SIMULTANEOUS BIRD SPECIES IN A NOISY ENVIRONMENT [J].
Briggs, Forrest ;
Huang, Yonghong ;
Raich, Raviv ;
Eftaxias, Konstantinos ;
Lei, Zhong ;
Cukierski, William ;
Hadley, Sarah Frey ;
Hadley, Adam ;
Betts, Matthew ;
Fern, Xiaoli Z. ;
Irvine, Jed ;
Neal, Lawrence ;
Thomas, Anil ;
Fodor, Gabor ;
Tsoumakas, Grigorios ;
Ng, Hong Wei ;
Thi Ngoc Tho Nguyen ;
Huttunen, Heikki ;
Ruusuvuori, Pekka ;
Manninen, Tapio ;
Diment, Aleksandr ;
Virtanen, Tuomas ;
Marzat, Julien ;
Defretin, Joseph ;
Callender, Dave ;
Hurlburt, Chris ;
Larrey, Ken ;
Milakov, Maxim .
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
[3]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15
[4]  
Duygulu Pinar., 2002, ECCV
[5]   Multiview Vector-Valued Manifold Regularization for Multilabel Image Classification [J].
Luo, Yong ;
Tao, Dacheng ;
Xu, Chang ;
Xu, Chao ;
Liu, Hong ;
Wen, Yonggang .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (05) :709-722
[6]  
McCallum Andrew Kachites, 1999, AAAI 99 WORKSH TEXT
[7]   Classifier chains for multi-label classification [J].
Read, Jesse ;
Pfahringer, Bernhard ;
Holmes, Geoff ;
Frank, Eibe .
MACHINE LEARNING, 2011, 85 (03) :333-359
[8]   Multi-label Classification using Ensembles of Pruned Sets [J].
Read, Jesse ;
Pfahringer, Bernhard ;
Holmes, Geoff .
ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, :995-1000
[9]  
Sanden C, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P705
[10]  
Tsoumakas G, 2007, LECT NOTES ARTIF INT, V4701, P406