共 50 条
Grain boundary structure and mobility in high-entropy alloys: A comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe
被引:82
|作者:
Utt, Daniel
[1
]
Stukowski, Alexander
[1
]
Albe, Karsten
[1
]
机构:
[1] Tech Univ Darmstadt, Inst Mat Wissensch, Fachgebiet Mat Modellierung, Otto Berndt Str 3, D-64287 Darmstadt, Germany
关键词:
High-entropy alloy;
Grain growth;
Grain boundary migration;
Grain boundary segregation;
Atomistic simulation;
STACKING-FAULT ENERGIES;
MECHANICAL-PROPERTIES;
THERMAL-STABILITY;
TRACER DIFFUSION;
FCC METALS;
COCRFENI;
PHASE;
EVOLUTION;
GROWTH;
MICROSTRUCTURE;
D O I:
10.1016/j.actamat.2019.12.031
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
We employ atomistic computer simulations to study the structure and migration behavior of a Sigma 11 symmetrical tilt grain boundary in a 4-component model FCC high-entropy alloy (HEA) (CuNiCoFe). The results are compared to grain boundaries in elemental metals and a so-called 'average-atom' sample. We find that the repeating structural units characterizing the static grain boundary structure show the same repeating structural units for all samples, while the high temperature equilibrium grain boundary structure is most strongly influenced by presence of stacking faults. Under an applied synthetic driving force, this GB migrates by a mechanism assisted by partial dislocations In all materials. For this reason the grain boundary mobilities and stacking fault energies are directly related. Moreover, the HEA sample and the average-atom sample show almost identical mobilities suggesting that local chemical fluctuations play a minor role. Solute segregation to the GB in the HEA suppresses GB migration up to very high temperatures and might be the main cause for reduced grain growth in FCC HEAs. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11 / 19
页数:9
相关论文