On large deviations in the Gaussian autoregressive process: stable, unstable and explosive cases

被引:20
作者
Bercu, B [1 ]
机构
[1] Univ Paris Sud, Math Lab, Equipe Probabil Stat & Modelisat, F-91405 Orsay, France
关键词
autoregressive Gaussian process; estimation; large deviations;
D O I
10.2307/3318740
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the Gaussian autoregressive process, the asymptotic behaviour of the Yule-Walker estimator is totally different in the stable, unstable and explosive cases. We show that, irrespective of this trichotomy, this estimator shares quite similar large deviation properties in the three situations. However, in the explosive case, we obtain an unusual rate function with a discontinuity point at its minimum.
引用
收藏
页码:299 / 316
页数:18
相关论文
共 13 条
[1]   ON ASYMPTOTIC DISTRIBUTIONS OF ESTIMATES OF PARAMETERS OF STOCHASTIC DIFFERENCE-EQUATIONS [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (03) :676-687
[2]  
[Anonymous], 2002, ESAIM PROBAB STAT, DOI DOI 10.1051/PS:2000101
[3]  
[Anonymous], 2011, APPL MATH
[4]  
[Anonymous], 1945, ACTA MATH-DJURSHOLM, DOI DOI 10.1007/BF02392223
[5]   ON DEVIATIONS OF THE SAMPLE-MEAN [J].
BAHADUR, RR ;
RAO, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04) :1015-1027
[6]   Large deviations for quadratic forms of stationary Gaussian processes [J].
Bercu, B ;
Gamboa, F ;
Rouault, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 71 (01) :75-90
[7]  
CAMER H, 1970, RANDOM VARIABLES PRO
[8]  
Grenander U, 1958, TOEPLITZ FORMS THEIR
[9]  
Jensen J.L., 1995, SADDLEPOINT APPROXIM
[10]   ON THE STATISTICAL TREATMENT OF LINEAR STOCHASTIC DIFFERENCE EQUATIONS [J].
Mann, H. B. ;
Wald, A. .
ECONOMETRICA, 1943, 11 (3-4) :173-220