Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions

被引:187
作者
Goodrich, Christopher S. [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
关键词
Discrete fractional calculus; Boundary value problem; Nonlocal boundary conditions; Positive solution; Existence and uniqueness of solution; MULTIPLE POSITIVE SOLUTIONS; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1016/j.camwa.2010.10.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a discrete fractional boundary value problem of the form -Delta(nu)y(t) = f (t + nu - 1, y(t + nu - 1)), y(nu - 2) = g(y), y(nu + b) = 0, where f : [nu - 1, ..., nu+b-1]N nu-2 x R -> R is continuous, g : C([nu - 2, v+b)N nu-2 is a given functional, and 1 < v <= 2. We give a representation for the solution to this problem. Finally, we prove the existence and uniqueness of solution to this problem by using a variety of tools from nonlinear functional analysis including the contraction mapping theorem, the Brouwer theorem, and the Krasnosel'skii theorem. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 202
页数:12
相关论文
共 15 条
[1]  
Agarwal R. P., 2001, CAMB TRACT MATH, V141
[2]  
Atici F M., 2007, International Journal of Difference Equations, V2, P165
[3]   Fractional q-calculus on a time scale [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (03) :333-344
[4]   Two-point boundary value problems for finite fractional difference equations [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (04) :445-456
[5]   Modeling with fractional difference equations [J].
Atici, Ferhan M. ;
Senguel, Sevgi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :1-9
[6]  
Atici FM, 2009, P AM MATH SOC, V137, P981
[7]   Twin solutions of boundary value problems for ordinary differential equations and finite difference equations [J].
Avery, RI ;
Chyan, CJ ;
Henderson, J .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) :695-704
[8]   Positive solutions for boundary value problem of nonlinear fractional differential equation [J].
Bai, ZB ;
Lü, HS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :495-505
[9]   Boundary value problems for differential equations with fractional order and nonlocal conditions [J].
Benchohra, M. ;
Hamani, S. ;
Ntouyas, S. K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2391-2396
[10]   Multiple positive solutions for discrete nonlocal boundary value problems [J].
Cheung, Wing-Sum ;
Ren, Jingli ;
Wong, Patricia J. Y. ;
Zhao, Dandan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) :900-915