Validation of theory-based models for the control of plasma currents in W7-X divertor plasmas

被引:5
作者
Dinklage, A. [1 ]
Fuchert, G. [1 ]
Wolf, R. C. [1 ]
Alonso, A. [2 ]
Andreeva, T. [1 ]
Beidler, C. D. [1 ]
de Baar, M. [3 ]
Gao, Y. [1 ]
Geiger, J. [1 ]
Jakubowski, M. [1 ]
Laqua, H. [1 ]
Marushchenko, N. [1 ]
Neuner, U. [1 ]
Pablant, N. [4 ]
Pavone, A. [1 ]
Rahbarnia, K. [1 ]
Schmitt, J. [5 ]
Smith, H. M. [1 ]
Stange, T. [1 ]
Turkin, Yu [1 ]
机构
[1] Max Planck Inst Plasma Phys, Greifswald, Germany
[2] CIEMAT, Madrid, Spain
[3] DIFFER, Eindhoven, Netherlands
[4] PPPL, Princeton, NJ USA
[5] Auburn Univ, Auburn, AL 36849 USA
关键词
Wendelstein; 7-X; bootstrap current; plasma control; stellarators; model validation; neoclassical modelling; TRANSPORT; STELLARATORS;
D O I
10.1088/1741-4326/ac2d58
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A theory-based model for the control of plasma currents for steady-state operation in W7-X is proposed and intended for model-based plasma control. The conceptual outline implies the strength of physics-based models: it offer approaches applicable to future conditions of fusion devices or next-step machines. The application at extrapolated settings is related to the validity range of the theory model. Therefore, the predictive power of theory-based control models could be larger than for data-driven approaches and limitations can be predicted from the validity range for the prediction of bootstrap currents in W7-X. The model predicts the L/R response when density or heating power is changed. The model is based on neoclassical bootstrap current calculations and validated for different discharge conditions. While the model was found to be broadly applicable for conducted electron-cyclotron-heated discharges in W7-X, limits were found for cases when the polarization of the electron cyclotron heating was changed from X2 to O2-heating. The validity assessment attempts to quantify the potential of the derived model for model-based control in the operational space (density, heating power) of W7-X.
引用
收藏
页数:10
相关论文
共 46 条
[1]  
Andreeva T, 2021, NUCL FUSION
[2]   Enhanced energy confinement after series of pellets in Wendelstein 7-X [J].
Baldzuhn, J. ;
Damm, H. ;
Beidler, C. D. ;
McCarthy, K. ;
Panadero, N. ;
Biedermann, C. ;
Bozhenkov, S. A. ;
Dinklage, A. ;
Brunner, K. J. ;
Fuchert, G. ;
Kazakov, Y. ;
Beurskens, M. ;
Dibon, M. ;
Geiger, J. ;
Grulke, O. ;
Hoefel, U. ;
Klinger, T. ;
Koechl, F. ;
Knauer, J. ;
Kocsis, G. ;
Kornejew, P. ;
Lang, P. T. ;
Langenberg, A. ;
Laqua, H. ;
Pablant, N. A. ;
Pasch, E. ;
Pedersen, T. S. ;
Ploeckl, B. ;
Rahbarnia, K. ;
Schlisio, G. ;
Scott, E. R. ;
Stange, T. ;
Von Stechow, A. ;
Szepesi, T. ;
Turkin, Y. ;
Wagner, F. ;
Winters, V ;
Wurden, G. ;
Zhang, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (05)
[3]   Demonstration of reduced neoclassical energy transport in Wendelstein 7-X [J].
Beidler, C. D. ;
Smith, H. M. ;
Alonso, A. ;
Andreeva, T. ;
Baldzuhn, J. ;
Beurskens, M. N. A. ;
Borchardt, M. ;
Bozhenkov, S. A. ;
Brunner, K. J. ;
Damm, H. ;
Drevlak, M. ;
Ford, O. P. ;
Fuchert, G. ;
Geiger, J. ;
Helander, P. ;
Hergenhahn, U. ;
Hirsch, M. ;
Hoefel, U. ;
Kazakov, Ye. O. ;
Kleiber, R. ;
Krychowiak, M. ;
Kwak, S. ;
Langenberg, A. ;
Laqua, H. P. ;
Neuner, U. ;
Pablant, N. A. ;
Pasch, E. ;
Pavone, A. ;
Pedersen, T. S. ;
Rahbarnia, K. ;
Schilling, J. ;
Scott, E. R. ;
Stange, T. ;
Svensson, J. ;
Thomsen, H. ;
Turkin, Y. ;
Warmer, F. ;
Wolf, R. C. ;
Zhang, D. .
NATURE, 2021, 596 (7871) :221-+
[4]   Benchmarking of the mono-energetic transport coefficients-results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS) [J].
Beidler, C. D. ;
Allmaier, K. ;
Isaev, M. Yu ;
Kasilov, S. V. ;
Kernbichler, W. ;
Leitold, G. O. ;
Maassberg, H. ;
Mikkelsen, D. R. ;
Murakami, S. ;
Schmidt, M. ;
Spong, D. A. ;
Tribaldos, V. ;
Wakasa, A. .
NUCLEAR FUSION, 2011, 51 (07)
[5]  
Beurskens M, 2021, NUCL FUSION
[6]   Final integration, commissioning and start of the Wendelstein 7-X stellarator operation [J].
Bosch, H. -S. ;
Brakel, R. ;
Braeuer, T. ;
Bykov, V. ;
van Eeten, P. ;
Feist, J. -H. ;
Fuellenbach, F. ;
Gasparotto, M. ;
Grote, H. ;
Klinger, T. ;
Laqua, H. ;
Nagel, M. ;
Naujoks, D. ;
Otte, M. ;
Risse, K. ;
Rummel, T. ;
Schacht, J. ;
Spring, A. ;
Pedersen, T. Sunn ;
Vilbrandt, R. ;
Wegener, L. ;
Werner, A. ;
Wolf, R. C. ;
Baldzuhn, J. ;
Biedermann, C. ;
Braune, H. ;
Burhenn, R. ;
Hirsch, M. ;
Hoefl, U. ;
Knauer, J. ;
Kornejew, P. ;
Marsen, S. ;
Stange, T. ;
Mora, H. Trimino .
NUCLEAR FUSION, 2017, 57 (11)
[7]   High-performance plasmas after pellet injections in Wendelstein 7-X [J].
Bozhenkov, S. A. ;
Kazakov, Y. ;
Ford, O. P. ;
Beurskens, M. N. A. ;
Alcuson, J. ;
Alonso, J. A. ;
Baldzuhn, J. ;
Brandt, C. ;
Brunner, K. J. ;
Damm, H. ;
Fuchert, G. ;
Geiger, J. ;
Grulke, O. ;
Hirsch, M. ;
Hoefel, U. ;
Huang, Z. ;
Knauer, J. ;
Krychowiak, M. ;
Langenberg, A. ;
Laqua, H. P. ;
Lazerson, S. ;
Marushchenko, N. B. ;
Moseev, D. ;
Otte, M. ;
Pablant, N. ;
Pasch, E. ;
Pavone, A. ;
Proll, J. H. E. ;
Rahbarnia, K. ;
Scott, E. R. ;
Smith, H. M. ;
Stange, T. ;
von Stechow, A. ;
Thomsen, H. ;
Turkin, Yu ;
Wurden, G. ;
Xanthopoulos, P. ;
Zhang, D. ;
Wolf, R. C. .
NUCLEAR FUSION, 2020, 60 (06)
[8]  
Brezinsek S., 2021, NUCL FUSION
[9]   Real-time dispersion interferometry for density feedback in fusion devices [J].
Brunner, K. J. ;
Akiyama, T. ;
Hirsch, M. ;
Knauer, J. ;
Kornejew, P. ;
Kursinski, B. ;
Laqua, H. ;
Meineke, J. ;
Mora, H. Trimino ;
Wolf, R. C. .
JOURNAL OF INSTRUMENTATION, 2018, 13
[10]   Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression [J].
Chilenski, M. A. ;
Greenwald, M. ;
Marzouk, Y. ;
Howard, N. T. ;
White, A. E. ;
Rice, J. E. ;
Walk, J. R. .
NUCLEAR FUSION, 2015, 55 (02)