Periodic responses of a structure with 3:1 internal resonance

被引:64
作者
Shaw, A. D. [1 ]
Hill, T. L. [2 ]
Neild, S. A. [2 ]
Friswell, M. I. [1 ]
机构
[1] Swansea Univ, Coll Engn, Swansea SA2 8PP, W Glam, Wales
[2] Univ Bristol, Dept Mech Engn, Queens Bldg, Bristol BS8 1TR, Avon, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Internal resonance; Vibration testing; Normal form; Isola; NONLINEAR NORMAL-MODES; EXPERIMENTAL IDENTIFICATION; HANGING CABLE;
D O I
10.1016/j.ymssp.2016.03.008
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work presents a conceptually simple experiment consisting of a cantilever beam with a nonlinear spring at the tip. The configuration allows manipulation of the relative spacing between the modal frequencies of the underlying linear structure, and this permits the deliberate introduction of internal resonance. A 3:1 resonance is studied in detail; the response around the first mode shows a classic stiffening response, with the addition of more complex dynamic behaviour and an isola region. Quasiperiodic responses are also observed but in this work the focus remains on periodic responses. Predictions using Normal Form analysis and continuation methods show good agreement with experimental observations. The experiment provides valuable insight into frequency responses of nonlinear modal structures, and the implications of nonlinearity for vibration tests. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 35 条
[1]   Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments [J].
Amabili, M .
COMPUTERS & STRUCTURES, 2004, 82 (31-32) :2587-2605
[2]  
Amabili M, 2008, NONLINEAR VIBRATIONS AND STABILITY OF SHELLS AND PLATES, P1, DOI 10.1017/CBO9780511619694
[3]  
[Anonymous], 2001, Nonlinearity in Structural Dynamics: Detection, Identification and Modelling, DOI DOI 10.1201/9780429138331
[4]  
[Anonymous], 2009, NONLINEAR VIBRATION
[5]   Control-based continuation for investigating nonlinear experiments [J].
Barton, David A. W. ;
Mann, Brian P. ;
Burrow, Stephen G. .
JOURNAL OF VIBRATION AND CONTROL, 2012, 18 (04) :509-520
[6]   Experimental investigation of the nonlinear response of a hanging cable .2. Global analysis [J].
Benedettini, F ;
Rega, G .
NONLINEAR DYNAMICS, 1997, 14 (02) :119-138
[7]   Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator [J].
Cammarano, A. ;
Hill, T. L. ;
Neild, S. A. ;
Wagg, D. J. .
NONLINEAR DYNAMICS, 2014, 77 (1-2) :311-320
[8]  
Carrella A., 2010, Passive Vibration Isolators with High-Static-Low-Dynamic-Stiffness
[9]   Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities [J].
Cho, Hanna ;
Jeong, Bongwon ;
Yu, Min-Feng ;
Vakakis, Alexander F. ;
McFarland, D. Michael ;
Bergman, Lawrence A. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (15-16) :2059-2065
[10]   On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion [J].
Daqaq, Mohammed F. ;
Masana, Ravindra ;
Erturk, Alper ;
Quinn, D. Dane .
APPLIED MECHANICS REVIEWS, 2014, 66 (04)