SKEIN ALGEBRAS OF SURFACES

被引:21
作者
Przytycki, Jozef H. [1 ,2 ]
Sikora, Adam S. [3 ]
机构
[1] George Washington Univ, Dept Math, Washington, DC 20052 USA
[2] Univ Gdansk, Dept Math Phys & Informat, Wita Stwosza 57, PL-80952 Gdansk, Poland
[3] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
Kauffman bracket skein module; skein algebra; Dehn-Thurston numbers; REPRESENTATION VARIETIES; CHARACTER VARIETIES; FUNDAMENTAL-GROUPS; KAUFFMAN; MODULES; ROOTS;
D O I
10.1090/tran/7298
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Kauffman bracket skein algebra of any oriented surface F (possibly with marked points in its boundary) has no zero divisors and that its center is generated by knots parallel to the unmarked components of the boundary of F. Furthermore, we show that skein algebras are Noetherian and Ore. Our proofs rely on certain filtrations of skein algebras induced by pants decompositions of surfaces. We prove some basic algebraic properties of the associated graded algebras along the way.
引用
收藏
页码:1309 / 1332
页数:24
相关论文
共 44 条
[1]   The localized skein algebra is Frobenius [J].
Abdiel, Nel ;
Frohman, Charles .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (06) :3341-3373
[2]   Representation varieties of the fundamental groups of compact non-orientable surfaces [J].
BenyashKrivets, VV ;
Chernousov, VI .
SBORNIK MATHEMATICS, 1997, 188 (7-8) :997-1039
[3]  
Bonahon F., 2016, ARXIV150501522
[4]  
Bonahon F, 2011, CONTEMP MATH, V560, P179
[5]   Quantum traces for representations of surface groups in SL2(C) [J].
Bonahon, Francis ;
Wong, Helen .
GEOMETRY & TOPOLOGY, 2011, 15 (03) :1569-1615
[6]  
BROWN KA, 2002, ADV COURSES MATH
[7]   Rings of SL2(C)-characters and the Kauffman bracket skein module [J].
Bullock, D .
COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (04) :521-542
[8]   Multiplicative structure of Kauffman bracket skein module quantizations [J].
Bullock, D ;
Przytycki, JH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) :923-931
[9]   Understanding the Kauffman bracket skein module [J].
Bullock, D ;
Frohman, C ;
Kania-Bartoszynska, J .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (03) :265-277
[10]   Multicurves and regular functions on the representation variety of a surface in SU(2) [J].
Charles, Laurent ;
Marche, Julien .
COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (02) :409-431