Kinetic study of instability growth rate in a helicon plasma discharge source

被引:0
作者
Jaafarian, Rokhsare [1 ]
Ganjovi, Alireza [1 ]
Etaati, Gholam Reza [2 ]
机构
[1] Grad Univ Technol, Photon Res Inst, Kerman, Iran
[2] Univ Tehran, Energy Engn & Phys Dept, Tehran, Iran
关键词
helicon plasma; instability increment rate; whistler waves; GENERALIZED THEORY; WAVES;
D O I
10.1002/ctpp.201700041
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, a kinetic model is developed to study the effects of the radio frequency antenna wavenumber, helicon plasma electron density, as well as their drift velocity and temperature on the instability increment rate of the helicon wave in both longitudinal and transverse directions. The ion acoustic (IA) wave frequencies and wavenumbers of the helicon waves are obtained when the maximum wave energy is deposited on the plasma ions. Moreover, it is shown that, at the IA wavenumber and frequencies, while the longitudinal instability increment rates for both the helicon and IA waves are ignorable, the transverse instability increment rate for both the helicon and IA wave increases. Besides, the longitudinal instability increment rate for the helicon or IA wave has non-zero resonant frequencies. On the other hand, the transverse instability increment rate of helicon or IA wave can be neglected. Furthermore, it is observed that, while both the imaginary part of longitudinal permittivity and longitudinal instability increment rate are not influenced by the electron temperature, their transverse component increases linearly with the electron temperature. In addition, the imaginary part of transverse permittivity increases almost linearly with the drift velocity of the plasma electrons.
引用
收藏
页码:272 / 281
页数:10
相关论文
共 28 条
  • [21] Theory of waves in pair-ion plasmas: Natural explanation of backward modes
    Kono, M.
    Vranjes, J.
    Batool, N.
    [J]. PHYSICS OF PLASMAS, 2013, 20 (12)
  • [22] AXIAL PROPAGATION OF HELICON WAVES
    LIGHT, M
    SUDIT, ID
    CHEN, FF
    ARNUSH, D
    [J]. PHYSICS OF PLASMAS, 1995, 2 (11) : 4094 - 4103
  • [23] FAST MAGNETIC FLUCTUATIONS IN SOLAR-WIND - HELIOS 1
    NEUBAUER, FM
    MUSMANN, G
    DEHMEL, G
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1977, 82 (22): : 3201 - 3212
  • [24] Internal structure and spatial dimensions of whistler wave regions in the magnetopause boundary layer
    Stenberg, G.
    Oscarsson, T.
    Andre, M.
    Vaivads, A.
    Backrud-Ivgren, M.
    Khotyaintsev, Y.
    Rosenqvist, L.
    Sahraoui, F.
    Cornilleau-Wehrlin, N.
    Fazakerley, A.
    Lundin, R.
    Decreau, P. M. E.
    [J]. ANNALES GEOPHYSICAE, 2007, 25 (11) : 2439 - 2451
  • [25] Comparison of electric dipole and magnetic loop antennas for exciting whistler modes
    Stenzel, R. L.
    Urrutia, J. M.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (08)
  • [26] HELICON PLASMA SOURCE EXCITED BY A FLAT SPIRAL COIL
    STEVENS, JE
    SOWA, MJ
    CECCHI, JL
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1995, 13 (05): : 2476 - 2482
  • [27] Tsurutani B. T., 1987, J GEOPHYS, V92, P11
  • [28] Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks
    Wilson, L. B., III
    Cattell, C. A.
    Kellogg, P. J.
    Goetz, K.
    Kersten, K.
    Kasper, J. C.
    Szabo, A.
    Meziane, K.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114